42 research outputs found

    Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P₄

    Get PDF
    A reaction scheme has been devised according to 3 RX + 3 Ti(III) + 0.25 P₄ → PR₃ + 3 XTi(IV), wherein RX = PhBr, CyBr, Me₃SiI or Ph₃SnCl, with contrasting results in the case of more hindered RX. The scheme accomplishes the direct radical functionalization of white phosphorus without the intermediacy of PCl₃

    Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and KÎČ X-ray Emission Spectroscopy

    Get PDF
    Synthetic efforts to prepare indium phosphide (InP) quantum dots (QDs) have historically generated emissive materials with lower than unity quantum yields. This property has been attributed to structural and electronic defects associated with the InP core as well as the chemistry of the shell materials used to overcoat and passivate the InP surface. Consequently, the uniformity of the core–shell interface plays a critical role. Using X-ray emission spectroscopy (XES) performed with a recently developed benchtop spectrometer, we studied the evolution of oxidized phosphorus species arising across a series of common, but chemically distinct, synthetic methods for InP QD particle growth and subsequent ZnE (E = S or Se) shell deposition. XES afforded us the ability to measure the speciation of phosphorus reliably, quantitatively, and more efficiently (with respect to both the quantity of material required and the speed of the measurement) than with traditional techniques, i.e., X-ray photoelectron spectroscopy and magic angle spinning solid state nuclear magnetic resonance spectroscopy. Our findings indicate that even with deliberate care to prevent phosphorus oxidation during InP core synthesis, typical shelling approaches unintentionally introduce oxidative defects at the core–shell interface, limiting the attainable photoluminescence quantum yields

    Elucidating the Location of Cd2+ in Post-synthetically Treated InP Quantum Dots Using Dynamic Nuclear Polarization 31P and 113Cd Solid-State NMR Spectroscopy

    Get PDF
    Indium phosphide quantum dots (InP QD) are a promising alternative to traditional QD materials that contain toxic heavy elements such as lead and cadmium. However, InP QD obtained from colloidal synthesis are often plagued by poor photoluminescence quantum yields (PL-QYs). In order to improve the PL-QY of InP QD, a number of post-synthetic treatments have been devised. Recently, it has been shown that InP post-synthetically treated with Lewis acid metal divalent cations (M-InP) exhibit enhanced PL-QY; however, the molecular structure and mechanism behind the improved PL-QY are not fully understood. To determine the surface structure of M-InP QD, dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy (DNP SENS) experiments were employed on a series of InP magic size clusters treated with Cd ions, InP QD, cadmium phosphide (Cd3P2) QD, and Cd-treated InP QD (Cd–InP QD). With the use of DNP SENS, we were able to obtain the 1D 31P and 113Cd NMR spectra, 113Cd{31P} rotational-echo double-resonance (REDOR) NMR spectra, and 31P{113Cd} dipolar heteronuclear multiple quantum correlation (D-HMQC) sequence. Changes in the phosphide 31P chemical shifts after Cd treatment provide indirect evidence that some Cd alloys into the sub-surface regions of the particle. DNP-enhanced 113Cd solid-state NMR spectra suggest that most Cd ions are coordinated by oxygen atoms from either carboxylate ligands or surface phosphate groups. 113Cd{31P} REDOR and 31P{113Cd} D-HMQC experiments confirm that a subset of Cd ions are located on the surface of Cd–InP QD and coordinated with phosphate groups

    A Compact Dispersive Refocusing Rowland Circle X-ray Emission Spectrometer for Laboratory, Synchrotron, and XFEL Applications

    Full text link
    X-ray emission spectroscopy is emerging as an important complement to x-ray absorption fine structure spectroscopy, providing a characterization of the occupied electronic density of states local to the species of interest. Here, we present details of the design and performance of a compact x-ray emission spectrometer that uses a dispersive refocusing Rowland (DRR) circle geometry to achieve excellent performance for the 2 - 2.5 keV energy range. The DRR approach allows high energy resolution even for unfocused x-ray sources. This property enables high count rates in laboratory studies, comparable to those of insertion-device beamlines at third-generation synchrotrons, despite use of only a low-powered, conventional x-ray tube. The spectrometer, whose overall scale is set by use of a 10-cm diameter Rowland circle and a new small-pixel CMOS x-ray camera, is easily portable to synchrotron or x-ray free electron beamlines. Photometrics from measurements at the Advanced Light Source show somewhat higher overall instrumental efficiency than prior systems based on less tightly curved analyzer optics. In addition, the compact size of this instrument lends itself to future multiplexing to gain large factors in net collection efficiency, or its implementation in controlled gas gloveboxes either in the lab or in an endstation.Comment: Submitted, Review of Scientific Instrument

    Organic building blocks at inorganic nanomaterial interfaces

    Get PDF
    This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an “anchor-functionality” paradigm. This “anchor-functionality” paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II–VI semiconductors, III–V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments
    corecore