83 research outputs found

    Pharmacological management of osteogenesis

    Get PDF
    Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-ÎČ catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases

    Pharmacological management of osteogenesis

    Get PDF
    Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-ÎČ catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases

    Sex differences in the use of mechanical ventilation in a neurointensive care population: a retrospective study

    Get PDF
    Background: In the general intensive care unit (ICU) women receive invasive mechanical ventilation (IMV) less frequently than men. We investigated whether sex differences in the use of IMV also exist in the neurocritical care unit (NCCU), where patients are intubated not only due to respiratory failure but also due to neurological impairment. Methods: This retrospective single-centre study included adults admitted to the NCCU of the University Hospital Zurich between January 2018 and August 2021 with neurological or neurosurgical main diagnosis. We collected data on demographics, intubation, re-intubation, tracheotomy, and duration of IMV or other forms of respiratory support from the Swiss ICU registry or the medical records. A descriptive statistics was performed. Baseline and outcome characteristics were compared by sex in the whole population and in subgroup analysis. Results: Overall, 963 patients were included. No differences between sexes in the use and duration of IMV, frequency of emergency or planned intubations, tracheostomy were found. The duration of oxygen support was longer in women (men 2 [2, 4] vs. women 3 [1, 6] days, p = 0.018), who were more often admitted due to subarachnoid hemorrhage (SAH). No difference could be found after correction for age, diagnosis of admission and severity of disease. Conclusion: In this NCCU population and differently from the general ICU population, we found no difference by sex in the frequency and duration of IMV, intubation, reintubation, tracheotomy and non-invasive ventilation support. These results suggest that the differences in provision of care by sex reported in the general ICU population may be diagnosis-dependent. The difference in duration of oxygen supplementation observed in our population can be explained by the higher prevalence of SAH in women, where we aim for higher oxygenation targets due to the specific risk of vasospasm

    Limitation of life sustaining measures in neurocritical care: sex, timing, and advance directive

    Get PDF
    Background: The limitation of life sustaining treatments (LLST) causes ethical dilemmas even in patients faced with poor prognosis, which applies to many patients admitted to a Neurocritical Care Unit (NCCU). The effects of social and cultural aspects on LLST in an NCCU population remain poorly studied. Methods: All NCCU patients between 01.2018 and 08.2021 were included. Medical records were reviewed for: demographics, diagnosis, severity of disease, and outcome. Advance directives (AD) and LLST discussions were reviewed evaluating timing, degree, and reason for LLST. Social/cultural factors (nationality, language spoken, religion, marital status, relationship to/sex of legal representative) were noted. Associations between these factors and the patients’ sex, LLST timing, and presence of AD were evaluated. Results: Out of 2975 patients, 12% of men and 10.5% of women underwent LLST (p=0.30). Women, compared to men, more commonly received withdrawal instead of withholding of life sustaining treatments (57.5 vs. 45.1%, p=0.028) despite comparable disease severity. Women receiving LLST were older (73±11.7 vs. 69±14.9 years, p=0.005) and often without a partner (43.8 vs. 25.8%, p=0.001) compared to men. AD were associated with female sex and early LLST, but not with an increased in-hospital mortality (57.1 vs. 75.2% of patients with and without AD respectively). Conclusions: In patients receiving LLST, the presence of an AD was associated with an increase of early LLST, but not with an increased in-hospital mortality. This supports the notion that the presence of an AD is primarily an expression of the patients’ will but does not per se predestine the patient for an unfavorable outcome. Key words: Redirection of Care, Palliation, Neurocritical Care, Sex Difference

    Numerical and experimental characterization of a piezoelectric actuator for microfluidic cell sorting

    Get PDF
    Piezoelectric actuators offer great opportunities for precise and low-cost control of fluids at the microscale. Microfluidic systems with integrated piezoelectric actuators find application as droplet generators, micropumps, and microsorters. To accelerate device design and optimization, modeling and simulation approaches represent an attractive tool, but there are challenges arising from the multiphysics nature of the problem. Simple, potentially real-time approaches to experimentally characterize the fluid response to piezoelectric actuation are also highly desirable. In this work, we propose a strategy for the numerical and experimental characterization of a piezoelectric microfluidic cell sorter. Specifically, we present a 3D coupled multiphysics finite-element model of the system and an easy image-based approach for flow monitoring. Sinusoidal and pulse actuation are considered as case studies to test the proposed methodology. The results demonstrate the validity of the approach as well as the suitability of the system for cell sorting applications

    Reinitiation of protein synthesis in Escherichia coli can be induced by mRNA cis-elements unrelated to canonical translation initiation signals

    Get PDF
    AbstractIn Eubacteria, de novo translation of some internal cistrons may be inefficient or impossible unless the 5â€Č neighboring cistron is also translated (translational coupling). Translation reinitiation is an extreme case of translational coupling in which translation of a message depends entirely on the presence of a nearby terminating ribosome. In this work, the characteristics of mRNA cis-elements inducing the reinitiation process in Escherichia coli have been investigated using a combinatorial approach. A number of novel translational reinitiation sequences (TRSs) were thus identified, which show a wide range of reinitiation activities fully dependent on a translational coupling event and unrelated to the presence/absence of secondary structure or mRNA stability. Moreover, some of the isolated TRSs are similar to intercistronic sequences present in the E. coli genome

    Phytoestrogens and Colon Cancer

    Get PDF

    Long-term outcome in new onset refractory status epilepticus: a retrospective study

    Get PDF
    BACKGROUND: New onset refractory status epilepticus (NORSE) is a neurologic emergency without an immediately identifiable cause. The complicated and long ICU stay of the patients can lead to perceiving a prolongation of therapies as futile. However, a recovery is possible even in severe cases. This retrospective study investigates ICU treatments, short- and long-term outcome and ethical decisions of a case series of patients with NORSE. METHODS: Overall, 283 adults were admitted with status epilepticus (SE) to the Neurocritical Care Unit of the University Hospital Zurich, Switzerland, between 01.2010 and 12.2022. Of them, 25 had a NORSE. We collected demographic, clinical, therapeutic and outcome data. Descriptive statistics was performed. RESULTS: Most patients were female (68%), previously healthy (Charlson comorbidity index 1 [0-4]) and relatively young (54 ± 17 years). 96% presented with super-refractory SE. Despite extensive workup, the majority (68%) of cases remained cryptogenic. Most patients had a long and complicated ICU stay. The in-hospital mortality was 36% (n = 9). The mortality at last available follow-up was 56% (n = 14) on average 30 months after ICU admission. The cause of in-hospital death for 89% (n = 8) of the patients was the withholding/withdrawing of therapies. Medical staff except for one patient triggered the decision. The end of life (EOL) decision was taken 29 [12-51] days after the ICU admission. Death occurred on day 6 [1-8.5] after the decision was taken. The functional outcome improved over time for 13/16 (81%) hospital survivors (median mRS at hospital discharge 4 [3.75-5] vs. median mRS at last available follow-up 2 [1.75-3], p < 0.001). CONCLUSIONS: Our data suggest that the long-term outcome can still be favorable in NORSE survivors, despite a prolonged and complicated ICU stay. Clinicians should be careful in taking EOL decisions to avoid the risk of a self-fulfilling prophecy. Our results encourage clinicians to continue treatment even in initially refractory cases

    An Imaging Overview of COVID-19 ARDS in ICU Patients and Its Complications: A Pictorial Review

    Get PDF
    A significant proportion of patients with COVID-19 pneumonia could develop acute respiratory distress syndrome (ARDS), thus requiring mechanical ventilation, and resulting in a high rate of intensive care unit (ICU) admission. Several complications can arise during an ICU stay, from both COVID-19 infection and the respiratory supporting system, including barotraumas (pneumothorax and pneumomediastinum), superimposed pneumonia, coagulation disorders (pulmonary embolism, venous thromboembolism, hemorrhages and acute ischemic stroke), abdominal involvement (acute mesenteric ischemia, pancreatitis and acute kidney injury) and sarcopenia. Imaging plays a pivotal role in the detection and monitoring of ICU complications and is expanding even to prognosis prediction. The present pictorial review describes the clinicopathological and radiological findings of COVID-19 ARDS in ICU patients and discusses the imaging features of complications related to invasive ventilation support, as well as those of COVID-19 itself in this particularly fragile population. Radiologists need to be familiar with COVID-19's possible extra-pulmonary complications and, through reliable and constant monitoring, guide therapeutic decisions. Moreover, as more research is pursued and the pathophysiology of COVID-19 is increasingly understood, the role of imaging must evolve accordingly, expanding from the diagnosis and subsequent management of patients to prognosis prediction

    Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (<it>Prunus persica </it>L. Batsch.), and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH) and its white-fleshed mutant 'Redhaven Bianca' (RHB) were examined.</p> <p>Results</p> <p>The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD) enzymes. In fact, the <it>ccd4 </it>transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production.</p> <p>Conclusions</p> <p>Differential expression of <it>ccd4 </it>is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid cleavage enzymes are required to fully elucidate their role in peach fruit pigmentation and aroma.</p
    • 

    corecore