2,927 research outputs found

    Phase Transitions in Generalised Spin-Boson (Dicke) Models

    Full text link
    We consider a class of generalised single mode Dicke Hamiltonians with arbitrary boson coupling in the pseudo-spin xx-zz plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke Hamiltonians. Only in the latter case (orthogonal static and fluctuating couplings), does the parity-symmetry induced quantum phase transition occur.Comment: 6 pages, 5 figue

    Non-equilibrium correlations and entanglement in a semiconductor hybrid circuit-QED system

    Get PDF
    We present a theoretical study of a hybrid circuit-QED system composed of two semiconducting charge-qubits confined in a microwave resonator. The qubits are defined in terms of the charge states of two spatially separated double quantum dots (DQDs) which are coupled to the same photon mode in the microwave resonator. We analyze a transport setup where each DQD is attached to electronic reservoirs and biased out-of-equilibrium by a large voltage, and study how electron transport across each DQD is modified by the coupling to the common resonator. In particular, we show that the inelastic current through each DQD reflects an indirect qubit-qubit interaction mediated by off-resonant photons in the microwave resonator. As a result of this interaction, both charge qubits stay entangled in the steady (dissipative) state. Finite shot noise cross-correlations between currents across distant DQDs are another manifestation of this nontrivial steady-state entanglement.Comment: Final versio

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    Three-level mixing and dark states in transport through quantum dots

    Full text link
    We consider theoretically the transport through the double quantum dot structure of the recent experiment of C. Payette {\it et al.} [Phys. Rev. Lett. {\bf 102}, 026808 (2009)] and calculate stationary current and shotnoise. Three-level mixing gives rise to a pronounced current suppression effect, the character of which charges markedly with bias direction. We discuss these results in connexion with the dark states of coherent population trapping in quantum dots.Comment: 6 pages, 5 fig

    Truncation method for Green's functions in time-dependent fields

    Full text link
    We investigate the influence of a time dependent, homogeneous electric field on scattering properties of non-interacting electrons in an arbitrary static potential. We develop a method to calculate the (Keldysh) Green's function in two complementary approaches. Starting from a plane wave basis, a formally exact solution is given in terms of the inverse of a matrix containing infinitely many 'photoblocks' which can be evaluated approximately by truncation. In the exact eigenstate basis of the scattering potential, we obtain a version of the Floquet state theory in the Green's functions language. The formalism is checked for cases such as a simple model of a double barrier in a strong electric field. Furthermore, an exact relation between the inelastic scattering rate due to the microwave and the AC conductivity of the system is derived which in particular holds near or at a metal-insulator transition in disordered systems.Comment: to appear in Phys. Rev. B., 21 pages, 3 figures (ps-files

    Universal Conductance and Conductivity at Critical Points in Integer Quantum Hall Systems

    Full text link
    The sample averaged longitudinal two-terminal conductance and the respective Kubo-conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, 0.60±0.02e2/h0.60\pm 0.02 e^2/h and 0.58±0.03e2/h0.58\pm 0.03 e^2/h, respectively. In the 2nd lowest Landau band, a critical conductance 0.61±0.03e2/h0.61\pm 0.03 e^2/h is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value 1/2e2/h1/2 e^2/h. We argue that this difference is due to the multifractal structure of critical wavefunctions, a property that should generically show up in the conductance at quantum critical points.Comment: 4 pages, 3 figure

    Two-Particle Dark State in the Transport through a Triple Quantum Dot

    Full text link
    We study transport through a triple quantum dot in a triangular geometry with applied bias such that both singly- and doubly- charged states participate. We describe the formation of electronic dark states -- coherent superpositions that block current flow -- in the system, and focus on the formation of a two-electron dark state. We discuss the conditions under which such a state forms and describe the signatures that it leaves in transport properties such as the differential conductance and shotnoise.Comment: (9 pages, 7 figures), we now consider two different sets of charging energie

    Dynamics of interacting transport qubits

    Full text link
    We investigate the electronic transport through two parallel double quantum dots coupled both capacitively and via a perpendicularly aligned charge qubit. The presence of the qubit leads to a modification of the coherent tunnel amplitudes of each double quantum dot. We study the influence of the qubit on the electronic steady state currents through the system, the entanglement between the transport double quantum dots, and the back action on the charge qubit. We use a Born-Markov-Secular quantum master equation for the system. The obtained currents show signatures of the qubit. The stationary qubit state may be tuned and even rendered pure by applying suitable voltages. In the Coulomb diamonds it is also possible to stabilize pure entangled states of the transport double quantum dots
    • …
    corecore