59 research outputs found

    Evidence for Stable Square Ice from Quantum Monte Carlo

    Full text link
    Recent experiments on ice formed by water under nanoconfinement provide evidence for a two-dimensional (2D) `square ice' phase. However, the interpretation of the experiments has been questioned and the stability of square ice has become a matter of debate. Partially this is because the simulation approaches employed so far (force fields and density functional theory) struggle to accurately describe the very small energy differences between the relevant phases. Here we report a study of 2D ice using an accurate wave-function based electronic structure approach, namely Diffusion Monte Carlo (DMC). We find that at relatively high pressure square ice is indeed the lowest enthalpy phase examined, supporting the initial experimental claim. Moreover, at lower pressures a `pentagonal ice' phase (not yet observed experimentally) has the lowest enthalpy, and at ambient pressure the `pentagonal ice' phase is degenerate with a `hexagonal ice' phase. Our DMC results also allow us to evaluate the accuracy of various density functional theory exchange correlation functionals and force field models, and in doing so we extend the understanding of how such methodologies perform to challenging 2D structures presenting dangling hydrogen bonds

    Structure and stability of molecular crystals with many body dispersion inclusive density functional tight binding

    Get PDF
    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semi-empirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. Here, we combine the Tkatchenko-Scheffler van-der-Waals method (TS) and the many body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared to a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction

    Free-energy landscape of polymer-crystal polymorphism

    Get PDF
    Polymorphism rationalizes how processing can control the final structure of a material. The rugged free-energy landscape and exceedingly slow kinetics in the solid state have so far hampered computational investigations. We report for the first time the free-energy landscape of a polymorphic crystalline polymer, syndiotactic polystyrene. Coarse-grained metadynamics simulations allow us to efficiently sample the landscape at large. The free-energy difference between the two main polymorphs, α\alpha and β\beta, is further investigated by quantum-chemical calculations. The two methods are in line with experimental observations: they predict β\beta as the more stable polymorph at standard conditions. Critically, the free-energy landscape suggests how the α\alpha polymorph may lead to experimentally observed kinetic traps. The combination of multiscale modeling, enhanced sampling, and quantum-chemical calculations offers an appealing strategy to uncover complex free-energy landscapes with polymorphic behavior.Comment: 10 pages, 4 figure

    On the physisorption of water on graphene: Sub-chemical accuracy from many-body electronic structure methods

    Full text link
    Molecular adsorption on surfaces plays a central role in catalysis, corrosion, desalination, and many other processes of relevance to industry and the natural world. Few adsorption systems are more ubiquitous or of more widespread importance than those involving water and carbon, and for a molecular level understanding of such interfaces water monomer adsorption on graphene is a fundamental and representative system. This system is particularly interesting as it calls for an accurate treatment of electron correlation effects, as well as posing a practical challenge to experiments. Here, we employ many-body electronic structure methodologies that can be rigorously converged and thus provide faithful references for the molecule-surface interaction. In particular, we use diffusion Monte-Carlo (DMC), coupled cluster (CCSD(T)), as well as the random phase approximation (RPA) to calculate the strength of the interaction between water and an extended graphene surface. We establish excellent, sub-chemical, agreement between the complementary high-level methodologies, and an adsorption energy estimate in the most stable configuration of approximately -100\,meV is obtained. We also find that the adsorption energy is rather insensitive to the orientation of the water molecule on the surface, despite different binding motifs involving qualitatively different interfacial charge reorganisation. In producing the first demonstrably accurate adsorption energies for water on graphene this work also resolves discrepancies amongst previously reported values for this widely studied system. It also paves the way for more accurate and reliable studies of liquid water at carbon interfaces with cheaper computational methods, such as density functional theory and classical potentials

    Fast and accurate quantum Monte Carlo for molecular crystals

    Get PDF
    Computer simulation plays a central role in modern day materials science. The utility of a given computational approach depends largely on the balance it provides between accuracy and computational cost. Molecular crystals are a class of materials of great technological importance which are challenging for even the most sophisticated \emph{ab initio} electronic structure theories to accurately describe. This is partly because they are held together by a balance of weak intermolecular forces but also because the primitive cells of molecular crystals are often substantially larger than those of atomic solids. Here, we demonstrate that diffusion quantum Monte Carlo (DMC) delivers sub-chemical accuracy for a diverse set of molecular crystals at a surprisingly moderate computational cost. As such, we anticipate that DMC can play an important role in understanding and predicting the properties of a large number of molecular crystals, including those built from relatively large molecules which are far beyond reach of other high accuracy methods

    Thermal Expansion of Carbamazepine:Systematic Crystallographic Measurements Challenge Quantum Chemical Calculations

    Get PDF
    We report systematic temperature-dependent X-ray measurements on the most stable carbamazepine polymorph. This active pharmaceutical ingredient is used to demonstrate how the thermal expansion can probe certain intermolecular interactions resulting in anisotropic expansion behavior. We show that most structural features can be captured by electronic structure calculations at the quasi-harmonic approximation (QHA) provided a dispersion-corrected density functional based method is employed. The impact of thermal expansion on the phonon modes and hence free energy contributions is large enough to impact the relative stability of different polymorphs
    • …
    corecore