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Computer simulation plays a central role in modern-day materials
science. The utility of a given computational approach depends
largely on the balance it provides between accuracy and compu-
tational cost. Molecular crystals are a class of materials of great
technological importance which are challenging for even the most
sophisticated ab initio electronic structure theories to accurately
describe. This is partly because they are held together by a bal-
ance of weak intermolecular forces but also because the primitive
cells of molecular crystals are often substantially larger than those
of atomic solids. Here, we demonstrate that diffusion quantum
Monte Carlo (DMC) delivers subchemical accuracy for a diverse
set of molecular crystals at a surprisingly moderate computational
cost. As such, we anticipate that DMC can play an important role
in understanding and predicting the properties of a large num-
ber of molecular crystals, including those built from relatively
large molecules which are far beyond reach of other high-accuracy
methods.
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Computer simulations, in particular those based on the fun-
damental laws of quantum mechanics, play a key role in

modern materials science research. Such electronic structure
approaches serve as an indispensable complement to experiment
by helping us understand and predict the properties of materials
as well as guiding the development of new ones. Density func-
tional theory (DFT) is the leading electronic structure technique
in materials science, thanks to its favorable balance between
accuracy and computational cost as well as its efficient imple-
mentation in modern codes. Indeed, DFT has been described
as one of the great success stories of modern science (1), with
widespread use in materials science and cognate disciplines (2–
4). However, DFT, as generally applied with standard exchange-
correlation functionals, suffers from a number of well-known
deficiencies (5–8). One notable shortcoming is in the descrip-
tion of weak interactions such as London dispersion forces.
Although the last decade has seen impressive developments with
the incorporation of dispersion forces in the DFT framework (9–
12), and new density functionals with improved accuracy have
been developed (13–15), such approaches are not systematically
improvable, and their accuracy for condensed phases is open
to question. For example, DFT cannot be relied upon to rou-
tinely deliver an accuracy below 4 kJ/mol for the lattice energy
of molecular crystals. This is the accuracy (so-called chemical
accuracy) that is often needed to discriminate between differ-
ent polymorphs of a given material, and, in some pharmaceutical
molecules, even more stringent accuracies (down to 1 kJ/mol)
are needed (16, 17).

Traditionally, highly accurate computations of interaction
energies have been based on quantum chemistry techniques, in
particular, coupled cluster with single, double, and perturba-
tive triple excitations [CCSD(T)]. However, CCSD(T) calcula-

tions on solids have been notoriously challenging. Great strides
forward have recently been made, and CCSD(T) can now be
used to study solids through calculations in periodic boundary
conditions (18), or by using approaches based on embedding
and fragment decomposition (19, 20). The benzene crystal, for
example, was recently considered in a tour de force study using
fragment decomposition (21). The recent introduction of local
approaches (22) promises to extend the range of applicability of
CCSD(T) methods. However, the cost of CCSD(T) calculations
for large systems will remain high for the foreseeable future,
and their large-scale application is additionally hindered by enor-
mous memory requirements. The random phase approximation
(RPA) is emerging as a promising approach for materials, in par-
ticular if singles corrections are introduced (23–25). Although it
is less accurate than CCSD(T), it is considerably more affordable
and currently offers a very good balance between accuracy and
computational cost. Quantum Monte Carlo, in particular within
the fixed node diffusion Monte Carlo (DMC) scheme (26), is an
established method for reference quality calculations of molec-
ular systems and condensed phases. Systematic studies in cases
of noncovalent bonding have shown that DMC has an accuracy
comparable to CCSD(T) (27). An advantage of DMC over tra-
ditional quantum chemical methods like CCSD(T) is that it is
essentially unaffected by basis set issues, thanks to the deploy-
ment of an efficient ground state projection scheme and the
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use of B-splines. However, the enormous computational cost
of this approach means that DMC studies generally require a
world-leading computational facility, and, even then, it remains
highly challenging to obtain demonstrably converged results. As
a result, DMC studies are often restricted to one-off benchmark
calculations of specific systems.

Building upon a recent algorithmic development (28) which
significantly reduces the computational cost of DMC, we have
developed a scheme (described in Materials and Methods) for
obtaining converged DMC energies of molecular crystals in a
fully periodic treatment, without the need for fragment decom-
positions. The approach is effective for both small and large
molecules and yields lattice energies of periodic molecular crys-
tals at a computational cost comparable to RPA but with the
accuracy of CCSD(T). For example, a chemically accurate lat-
tice energy of a benzene crystal can be computed in as few as
104 central processing unit (CPU) hours. In addition, the scheme
proposed comes with relatively low manpower costs and can be
seen as a step toward the automated DMC treatment of molecu-
lar crystals. This opens up horizons for DMC as a tool for accu-
rately and rapidly predicting the properties of molecular crys-
tals, including those built from pharmaceutical molecules. More
broadly, the insights obtained from this study should also prove
beneficial to DMC studies of other crystalline materials and their
surfaces.

Results
The main quantity to consider to assess the stability of a crystal
is its lattice energy Elatt, which is the energy per molecule gained
upon assuming the crystal form with respect to the gas state. It
can be computed as

Elatt =Ecrys −Egas, [1]

with Ecrys as the energy per molecule in the crystal state and Egas
as the energy of the isolated molecule. While the accurate com-
putation of Egas is straightforward, Ecrys involves an ideally infi-
nite system. Since any simulated system will be necessarily finite,
the evaluation of Ecrys will be affected by finite size errors (FSE).
The most common approach to tackle crystals is to exploit their
periodicity and to simulate a cell within periodic boundary con-
ditions. In DFT, the energy of the infinite system is recovered by
simulating the primitive cell and by sampling the first Brillouin
zone. In DMC, the wave function is sampled by considering a
number of electron configurations, including configurations with
local dipoles that, in a small simulation cell (such as the primitive
cell), couple with the periodic images, yielding substantial FSE.
However, established procedures developed for DMC to reduce
or eliminate these errors are available, such as the model peri-
odic Coulomb (MPC) interaction (29), the approach used in this
study. MPC treats the explicit two-body interactions within the
minimum-image convention in the simulation cell, while, outside
the cell, the interaction is with a precalculated charge density
normally obtained from a DFT calculation. In principle, MPC
can miss some of the correlation energy. Thus, in DMC, it is good
practice to simulate supercells of increasing size and to extrapo-
late the energy of the infinite system. On the other hand, molecu-
lar crystals have primitive cells that are already large (and related
to the size of the molecule), meaning that calculations in the
larger cells needed for the extrapolations can be computationally
prohibitive. However, thanks to recent developments (28), it is
now possible to simulate large supercells up to cases where FSE
are negligible. This, in turn, allows us to establish that accurate
results from DMC can, in practice, be obtained in small primitive
cells if appropriate corrections for FSE are taken into account.

Typically, the computation of Elatt is performed at zero tem-
perature and considering only the electronic contribution, i.e.,
quantum nuclear effects are neglected (30). The lattice energy

is not directly assessable experimentally, but it can be indi-
rectly obtained from experimental measures of the sublima-
tion enthalpy ∆subH (T ) at a given temperature T by includ-
ing a (theoretically evaluated) energy contribution ∆T&QN(T )
accounting for contributions from thermal and quantum nuclear
effects,

∆subH (T ) =−Elatt + ∆T& QN(T ). [2]

The evaluation of ∆T&QN(T ) can be challenging, especially
for large molecules where anharmonic contributions are impor-
tant (31). In SI Appendix, we provide details about the theoreti-
cal evaluations of ∆T&QN(T ) and the uncertainty associated with
experimental evaluations of ∆subH . Since both ∆subH (T ) and
∆T&QN(T ) are affected by errors, accurate theoretical evalua-
tions of Elatt are of help for comparison. To assess the accuracy
of a method, one needs to use a diverse test set of systems. In
this study, we considered eight molecular crystals (Fig. 1): carbon
dioxide (CO2), ammonia (NH3), benzene (C6H6), naphthalene
(C10H8), and anthracene (C14H10) crystals from the C21 test set
of Otero-de-la-Roza and Johnson (32), plus three polymorphs
of ice: the hexagonal ice Ih , ice II, and a high-pressure phase
ice VIII. This set of molecular crystals comprises a diversity in
intermolecular interactions involving strong hydrogen bonds and
London dispersion of saturated and unsaturated molecules. A
range of interactions such as this is a tough test for any elec-
tronic structure method. It is a test that must be passed through
if a method is to be truly predictive and applicable to complex
molecular crystals, including those of industrial interest (33, 34).
DMC values for Elatt of the eight molecular crystals are summa-
rized in Table 1. Two sets of DMC results are reported: DMC(lc)
and DMC(sc). The former is obtained using large supercells
(containing around a thousand valence electrons); the latter is
obtained using smaller cells and relying on the FSE correc-
tion via the MPC interaction (see Materials and Methods and SI
Appendix). We find that, in all cases, the DMC(sc) results are
in excellent agreement with the DMC(lc) results, as a confir-
mation of the quality of the MPC approach for the correction
of FSE. MPC was introduced two decades ago (29), but here,
using the algorithm of ref. 28, we have been able to explicitly
demonstrate how well MPC performs for complex systems such
as molecular crystals. Table 1 also reports lattice energies derived
from experiments. The experimental values are obviously not
free from error and have an uncertainty coming from both the

Fig. 1. Molecular crystals considered in this work with DMC. Only the prim-
itive cell is shown in each case. The systems treated are of considerable size
and contain up to 144 molecules (ice VIII) or 1,728 electrons (CO2).
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Table 1. Lattice energy (kilojoules per mole) for the molecular
crystals under consideration in this work, computed with DMC
compared with values from experimental measures of
sublimation enthalpy

Crystal DMC(lc)* DMC(sc)† Experiment‡

Ice Ih −59.3 ± 0.5 −59.2 ± 0.2 −58.8
Ice II −59.1 ± 0.6 −59.0 ± 0.3 −58.8
Ice VIII −57.3 ± 0.6 −57.4 ± 0.1 −57.4
Carbon dioxide −28.2 ± 1.3 −28.5 ± 0.4 −28.4
Ammonia −37.1 ± 0.4 −37.5 ± 0.1 −37.2
Benzene −52.1 ± 0.4 −51.2 ± 0.2 −50.6
Naphthalene −78.8 ± 0.8 −78.0 ± 0.6 −79.2
Anthracene −105.5 ± 1.7 −103.9 ± 1.0 −105.8

∗DMC using a large supercell.
†DMC using a small supercell; additional values in SI Appendix.
‡See SI Appendix, Lattice Energy from Experiments for details.

actual measure of ∆subH and the computed term ∆T&QN on the
order of the chemical accuracy, ∼4 kJ/mol. For naphthalene and
anthracene, which have the largest values for Elatt, the experi-
mental uncertainties are likely to be larger. See SI Appendix for a
detailed discussion on the experimental values. Upon comparing
DMC to experiment, we find that both DMC(lc) and DMC(sc)
always fall within the accuracy of the experimental value. This
is remarkable if we consider that this accuracy is achieved over
a large range of lattice energies, Elatt from 28 kJ/mol to more
than 100 kJ/mol. DMC gets correct lattice energies for hydrogen-
bonded, dispersion-bonded and mixed-bonded crystals. DMC
also predicts the correct relative energies of the ice polymorphs,
yielding slightly improved lattice energies over those reported
in ref. 35.

Discussion
A comparison of the results obtained from DMC to experi-
ment and to other reference quality computational approaches
is shown in Fig. 2. This includes second order Møller–Plesset
perturbation theory (MP2) results for all systems (36–38), and
CCSD(T) for all molecules up to benzene (21, 36, 38). RPA and
RPA with GW singles excitations (RPA+GWSE) lattice ener-
gies for ice are calculated in this work, and the other values are
from ref. 25. From this comparison, we notice that CCSD(T)
and RPA+GWSE perform well, whereas RPA systematically
underbinds all systems, and MP2 severely overbinds in systems
with delocalized electrons such as benzene, naphthalene, and
anthracene. Among the computational approaches reported in
Fig. 2, only CCSD(T) is acknowledged for an accuracy compara-
ble to DMC, and, indeed, they show excellent agreement. How-
ever, all CCSD(T) (and MP2) values reported come from frag-
ment decomposition approaches, which involve the computation
of many small contributions to the lattice energy, all of which
must be converged to high accuracy, and, typically, the correla-
tion contribution from long-range fragments is computed at a
lower level of theory. This can be a painstaking process. Also
the range of values obtained from the widely studied benzene
crystal (−50 kJ/mol to −56 kJ/mol) (21, 38–41) suggests that
the decisions made in carrying out the fragment decomposition
can have a noticeable effect on the final result. A big advan-
tage of methods using periodic boundary conditions, such as
DMC, is that the Elatt is obtained from a single calculation (pro-
vided that FSE are corrected for), which makes such approaches
more suitable for rapid screening. As an added bonus, methods
such as DMC also yield information on the electronic struc-
ture and electron density on the full periodic system, informa-
tion that can be used for the calculation of experimental observ-
ables and to obtain deeper understanding of the system under
consideration.

Computational cost is of utmost importance when making
comparisons of computational methods. While DMC(lc) and
DMC(sc) produce almost equal values for Elatt, each DMC(sc)
is much cheaper than DMC(lc). For example, as shown in Fig.
2, Bottom, DMC(sc) is typically one to two orders of magnitude
cheaper. Indeed, most of the DMC(sc) results take around 104

CPU hours, and can be obtained in around a day on a few hun-
dred processors. This is much more affordable than CCSD(T),
which is also only feasible for relatively small molecules with
the fragment decomposition approach or small crystals in peri-
odic boundary conditions. RPA+GWSE has, so far, provided a
good compromise between accuracy and computational cost. Fig.
2 shows that the cost for DMC(sc), for a precision on Elatt of
around 1 kJ/mol, is, in general, comparable to RPA.

The computational efficiency of the DMC simulations and the
fact that we have periodic boundary conditions makes it rela-
tively straightforward to investigate other properties beyond the
lattice energy. For instance, we have obtained the equation of
state (EOS) for both ammonia and benzene; these are crystals
held together predominantly by hydrogen bonds and dispersion
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Fig. 2. Accurate and fast DMC results for a range of molecular crystals.
(Top) Difference in the value of Elatt between the experimental value and
several computational approaches often used as reference methods. Here
DMC(lc) and DMC(sc) indicate that large or small supercells, respectively,
have been used. RPA and RPA+GWSE values for ice have been computed
in this work; other values are from ref. 25. MP2 and CCSD(T) values for ice
are from ref. 36, benzene values are from ref. 21, MP2 values for naphtha-
lene and anthracene are from ref. 37, other values are from ref. 38. (Bottom)
Approximate computational cost for DMC(sc), DMC(lc), RPA, and RPA+GWSE
(see SI Appendix for details). The DMC cost is intended for a precision of
0.7 kJ/mol. Reported timings are intended only to provide an indication;
differences in the codes and computation facilities can yield very different
timings.
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Fig. 3. EOS for the ammonia and benzene crystals (with zero-point motion
not accounted for). In both cases, the DMC Elatt values are calculated using
the 2× 2× 2 cell, and FSE are corrected for with MPC. The dashed line is
the Murnaghan EOS fitting the DMC values, which, for ammonia, yields
a minimum E0 of −37.25± 0.05 kJ/mol at a volume V0 of 32.6± 0.1 Å3

per molecule and a bulk modulus B0 of 8.5± 0.5 GPa; for benzene, E0 is
−52.37± 0.06 kJ/mol, V0 is 115.7± 0.1 Å3 per molecule, and B0 is 7.7±
0.2 GPa. The value of B′0 in the Murnaghan EOS is set to 4.

interactions, respectively. The results of these simulations, along
with fits to the Murnaghan EOS, are reported in Fig. 3. From
this, we find that the equilibrium volumes (V0) predicted by
DMC agree very well with experiment, coming out ∼3% smaller
than experiment for both crystals. Slightly smaller DMC vol-
umes are to be expected, since our calculations do not take into
account anharmonic thermal expansion and quantum nuclear
effects present in experiment. The EOS calculations are also
useful because they allow us to test the sensitivity of our com-
puted Elatt to the volume used in our calculations. The DMC
Elatt values listed in Table 1 have been obtained at experimen-
tally measured densities. For the two crystals reported in Fig. 3,
the bias on Elatt arising from the use of the experimental vol-
ume appears very small, less than 0.2 kJ/mol. For the other crys-
tals reported in Table 1, we expect, on the basis of DFT tests
(25), a bias on Elatt due to the volume on the order of 1 kJ/mol
or less. A second source of bias on the values of Elatt reported
in Table 1 is due to the geometries used for the DMC calcu-
lations. Indeed, DMC, CCSD(T), MP2, and RPA are typically
too expensive for a geometry optimization, which is often per-
formed via DFT with a reliable functional. In SI Appendix, we
report the EOS of ammonia and benzene obtained using the
geometries from two different DFT functionals. The uncertainty
on Elatt appears to be less than 1 kJ/mol for both ammonia and
benzene.

To conclude, we have demonstrated that DMC provides a
route toward the fast and accurate determination of the prop-
erties of molecular crystals. In essence, the scheme makes use of
the size-consistent DMC algorithm introduced earlier (28) and
an accurate approach for correcting for FSE. We have applied
this approach to a range of exemplar systems held together
with a range of intermolecular interactions (hydrogen bonds
to London dispersion). The calculations have confirmed pre-
vious results on water ice polymorphs but with minimal com-
putational cost and with much more control over the numeri-
cal accuracy of the results than before. Our results also include
EOS calculations for benzene—the “fruitfly” molecular crystal
in computational materials science—and anthracene, the largest
molecule in the C21 dataset. The consistently high accuracy
demonstrated by DMC, along with its moderate computational
cost, suggests that DMC can play an increasingly important
role in studies of molecular crystals. In particular, DMC could
prove to be the method of choice in challenging polymorph
prediction studies. Similarly, molecules of direct pharmaceuti-
cal interest could now be tackled with DMC, opening up their

study with a high-level ab initio approach. To provide full phase
diagrams for molecular crystals, our accurate lattice energies
have to be combined with estimates of zero-point and thermal
effects. This is traditionally computed at the DFT level, where
our study will further provide an important benchmark to test
and calibrate these approximate methods. Looking farther to
the future, we note that several steps of the proposed method-
ology could be used in a full configuration interaction QMC
approach (18), which would yield essentially exact solutions to
the Schrödinger equation for molecular crystals. Finally, we note
that, beyond molecular crystals, the improved efficiencies and
improved understanding of FSE obtained here will also be of
direct relevance to DMC simulations on other classes of mate-
rial, e.g., absorption in metal organic frameworks and binding to
surfaces.

Materials and Methods
Geometries for the C21 crystals are taken from ref. 25 [where the geome-
tries for molecules and crystals are optimized via DFT using the optB88-
vdW functional (42), and crystals are in the experimental unit cell]. For
ice phases, we took the geometries used in ref. 35. DMC simulations
were carried out with the casino code (43) to evaluate Ecrys and Egas. We
used Dirac–Fock pseudopotentials (44, 45) with the locality approximation
(46). The trial wave functions were of the Slater–Jastrow type with sin-
gle Slater determinants and the single-particle orbitals obtained from DFT
local-density approximation (LDA) plane-wave calculations performed with
pwscf (www.quantum-espresso.org/) and reexpanded in terms of B-splines
(47). The Jastrow factor included electron–electron, electron–nucleus, and
electron–electron–nucleus terms. Further details on the wave function and
the optimization are provided in SI Appendix, as well as some compar-
ative tests with the recently introduced correlated electron pseudopot-
entials (48).

In the computation of Ecrys, periodic boundary conditions are used. Sim-
ulations with DMC in periodic boundary conditions can be subject to sig-
nificant FSE, as previously discussed. To assess the converged value of Elatt,
for any molecular crystal, several simulation cells were considered, as well as
twist boundary conditions (49) for the smallest cells. This has revealed that
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the Elatt obtained from the primitive cell can be overestimated by as much as
300% due to FSE. However, correction schemes to reduce FSE are available
in DMC, such as the MPC interaction (29, 50, 51), the correction proposed
in ref. 52, and the one in ref. 53. We have tested all of them and observed
that MPC provides the best results, as shown in SI Appendix. Here we report
results obtained exclusively with MPC. A second and smaller source of FSE in
DMC stems from the use of single-particle orbitals obtained from a DFT cal-
culation on a single point in the Brillouin zone (typically the Γ-point). This
error, called the independent particle finite size error (IPFSE), can be easily
estimated and corrected for by performing a few additional DFT calcula-
tions. Further computational details are reported in SI Appendix, including
the atomic coordinates for each molecular system studied.

The time step, τ , is a key issue affecting the accuracy of DMC calcula-
tions. In DMC, a propagation according to the imaginary time Schrödinger
equation is performed to project out the exact ground state from a trial
wave function (26). A time step τ must be chosen, keeping in mind that
the efficiency of DMC is directly proportional to τ but the projection is
exact only in the continuous limit τ→ 0. Thus, τ has to be small enough
to yield converged results, but as large as possible to make DMC efficient.
The time step dependence is system-dependent, so it has to be evaluated
on a case-by-case basis. In periodic systems, this can be computationally
very expensive, because each supercell is possibly affected by the time step
differently. As noted, an improved DMC algorithm (28) was recently pre-
sented. The new algorithm, denoted ZSGMA from the authors’ initials, gives
better convergence with respect to τ than the one proposed by Umrigar,
Nightingale, and Runge (UNR) (54) which is implemented as standard in
DMC codes. In the evaluation of Elatt, an important practical point is the
influence of the simulation cell size on the time step error. This is shown
in Fig. 4 for the example of the ammonia crystal. Specifically, in Fig. 4,
the dependence of Elatt on τ is shown for a range of different unit cells.
First, it can be seen that, with ZSGMA, Elatt exhibits almost no dependence
on τ for the range of τ reported. In contrast, values of Elatt from UNR
show a pronounced and nonlinear dependence on τ . This means that, for
UNR simulations, small values of τ (say τ ≤ 0.001 au) are required to gen-
erate a reliable τ→ 0 extrapolation. Second, we find that, with ZSGMA,
the time step error on Elatt is independent of the size of the unit cell
(compare the 1 × 1 × 1, the 2 × 2 × 2, and the 3 × 3 × 3 cells in
Fig. 4). In contrast with UNR, the time step error increases significantly
as the size of the simulation cell is increased. This general behavior can
be rationalized by the fact that ZSGMA is (approximatively) size-consistent
up to relatively large values of τ , while UNR is size-consistent only in the
limit τ→ 0.

In this work, we have verified the time step convergence with the ZSGMA
algorithm for each molecular crystal, as reported in SI Appendix. It is the
larger time step that ZSGMA facilitates and the insensitivity of the time step
error to the size of the cell that enable the converged DMC calculations
on large crystals reported in this study. All results reported in the work are
obtained with the ZSGMA algorithm and a time step that yields a bias of
<1 kJ/mol. With the UNR algorithm, the same accuracy would have required
difficult extrapolations and a computational cost around two orders of mag-
nitude larger.

We now describe the scheme used here to compute accurate values of
Elatt with DMC. We recommend the use of the ZSGMA algorithm (28) in all
DMC calculations, and the use of MPC for all DMC calculations in periodic
systems. The following five-step procedure can be used to assess the lattice
energy for a given molecular crystal.

i) Geometries – Obtain geometries for the molecular crystal and the iso-
lated molecule. Since geometry optimizations of large systems are chal-
lenging with DMC, we recommend the use of DFT and an exchange-
correlation functional that accounts for Van der Waals (vdW) dispersion

forces. If reliable experimental structures are available, the optimiza-
tion should be performed at the experimental volume.

ii) IPFSE – Using the structure obtained in i, converge the energy per
molecule in the crystal, EDFT,∞

crys , using the functional that is used
to obtain the single particle orbitals for the DMC calculations (we
generally use LDA). Convergence is reached by considering l×m× n
Monkhorst–Pack grids of increasing size. The difference EDFT,l×m×n

crys -

EDFT,∞
crys = IPFSEDFT

l×m×n provides a good indication of the independent
particle contribution to the FSE in DMC calculations for an l×m× n
supercell; see SI Appendix.

iii) Jastrow optimization – Take the smallest supercell that is compatible
with the Jastrow factor (typically the Jastrow factor has cutoffs related
to the size of the simulated cell; we suggest using supercells with the
maximum radius of a sphere inscribed within the Wigner–Seitz cell of
>5 Å) and optimize the Jastrow factor of the quantum Monte Carlo
wave function by minimizing the variance (or, alternatively, the vari-
ational energy). An optional test of the reliability of the Jastrow can
be performed by calculating the DMC binding energy in a molecular
dimer extracted from the crystal, and comparing it with a reference
value obtained from CCSD(T).

iv) DMC time step – Check the time step dependence either on the cell
used in step iii or on the molecular dimer.

v) Final DMC calculation of Elatt – Take a supercell from step ii with the
estimation IPFSEDFT

l×m×n smaller than 10 kJ/mol. Perform the DMC simu-
lation for this crystal using MPC, and perform the DMC calculation with
open conditions for the molecule. Calculate Elatt and correct for the
independent particle FSE using IPFSEDFT

l×m×n. This yields the final DMC(sc)

result. Optionally, consider larger supercells to reduce IPFSEDFT
l×m×n and

the MPC correction.

The threshold IPFSEDFT
l×m×n < 10 kJ/mol (in step v) is motivated by the tar-

get accuracy of∼1 kJ/mol and a∼10% reliability of the DFT-based IPFSE cor-
rection. A more accurate alternative to evaluate the IPFSE is possible (twist
averaging) and is discussed in SI Appendix.

Supporting Information
SI Appendix provides details of the setup for the DMC, RPA, and
RPA+GWSE calculations, a discussion of the FSE, and addi-
tional DMC results. In addition, the computational cost of DMC
is discussed, as well as of RPA and RPA+GWSE. An extended
version of Table 1 is given, and the evaluation of lattice energies
from experimental sublimation enthalpies is discussed. Geome-
tries of the molecular crystals and reference molecules used for
the DMC, RPA, and RPA-GWSE calculations are given.
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