1,036 research outputs found

    Matter Bounce in Horava-Lifshitz Cosmology

    Full text link
    Horava-Lifshitz gravity, a recent proposal for a UV-complete renormalizable gravity theory, may lead to a bouncing cosmology. In this note we argue that Horava-Lifshitz cosmology may yield a concrete realization of the matter bounce scenario, and thus give rise to an alternative to inflation for producing a scale-invariant spectrum of cosmological perturbations. In this scenario, quantum vacuum fluctuations exit the Hubble radius in the pre-bounce phase and the spectrum is transformed into a scale-invariant one on super-Hubble scales before the bounce because the long wavelength modes undergo squeezing of their wave-functions for a longer period of time than shorter wavelength modes. The scale-invariance of the spectrum of curvature fluctuations is preserved during and after the bounce. A distinctive prediction of this scenario is the amplitude and shape of the bispectrum.Comment: 6 pages, 1 figure, a couple of minor wording change

    Current Acceleration from Dilaton and Stringy Cold Dark Matter

    Get PDF
    We argue that string theory has all the ingredients to provide us with candidates for the cold dark matter and explain the current acceleration of our Universe. In any generic string compactification the dilaton plays an important role as it couples to the Standard Model and other heavy non-relativistic degrees of freedom such as the string winding modes and wrapped branes, we collectively call them stringy cold dark matter. These couplings are non-universal which results in an interesting dynamics for a rolling dilaton. Initially, its potential can track radiation and matter while beginning to dominate the dynamics recently, triggering a phase of acceleration. This scenario can be realized as long as the dilaton also couples strongly to some heavy modes. We furnish examples of such modes. We provide analytical and numerical results and compare them with the current supernovae result. This favors certain stringy candidates.Comment: 16 pages, 4 figures (colour

    Cosmological Solution in M-theory on S^1/Z_2

    Get PDF
    We provide the first example of a cosmological solution of the Horava-Witten supergravity. This solution is obtained by exchanging the role of time with the radial coordinate of the transverse space to the five-brane soliton. On the boundary this corresponds to rotating an instanton solution into a tunneling process in a space with Lorentzian signature, leading to an expanding universe. Due to the freedom to choose different non-trivial Yang-Mills backgrounds on the boundaries, the two walls of the universe ( visible and hidden worlds) expand differently. However at late times the anisotropy is washed away by gravitational interactions.Comment: 10 pages, latex, no figur

    Dilaton stabilization by massive fermion matter

    Full text link
    The study started in a former work about the Dilaton mean field stabilization thanks to the effective potential generated by the existence of massive fermions, is here extended. Three loop corrections are evaluated in addition to the previously calculated two loop terms. The results indicate that the Dilaton vacuum field tend to be fixed at a high value close to the Planck scale, in accordance with the need for predicting Einstein gravity from string theory. The mass of the Dilaton is evaluated to be also a high value close to the Planck mass, which implies the absence of Dilaton scalar signals in modern cosmological observations. These properties arise when the fermion mass is chosen to be either at a lower bound corresponding to the top quark mass, or alternatively, at a very much higher value assumed to be in the grand unification energy range. One of the three 3-loop terms is exactly evaluated in terms of Master integrals. The other two graphs are however evaluated in their leading logarithm correction in the perturbative expansion. The calculation of the non leading logarithmic contribution and the inclusion of higher loops terms could made more precise the numerical estimates of the vacuum field value and masses, but seemingly are expected not to change the qualitative behavior obtained. The validity of the here employed Yukawa model approximation is argued for small value of the fermion masses with respect to the Planck one. A correction to the two loop calculation done in the previous work is here underlined.Comment: 18 pages, 5 figures, the study was extended and corrections on the former calculations and redaction were done. The paper had been accepted for publication in "Astrophysics and Space Science

    Detection of transplanckian effects in the cosmic microwave background

    Full text link
    Quantum gravity effects are expected to modify the primordial density fluctuations produced during inflation and leave their imprint on the cosmic microwave background observed today. We present a new analysis discussing whether these effects are detectable, considering both currently available data and simulated results from an optimal CMB experiment. We find that the WMAP (Wilkinson Microwave Anisotropy Probe) data show no evidence for the particular signature considered in this work but give an upper bound on the parameters of the model. However, a hypothetical experiment shows that with proper data, the trans-Planckian effects should be detectable through alternate sampling methods. This fuzzy conclusion is a result of the nature of the oscillations, since they give rise to a likelihood hypersurface riddled with local maxima. A simple Bayesian analysis shows no significant evidence for the simulated data to prefer a trans-Planckian model. Conventional Markov chain Monte Carlo (MCMC) methods are not suitable for exploring this complicated landscape, but alternative methods are required to solve the problem. This, however, requires extremely high-precision data.Comment: 9 pages, 22 figure

    String Gas Cosmology and Structure Formation

    Get PDF
    It has recently been shown that a Hagedorn phase of string gas cosmology may provide a causal mechanism for generating a nearly scale-invariant spectrum of scalar metric fluctuations, without the need for an intervening period of de Sitter expansion. A distinctive signature of this structure formation scenario would be a slight blue tilt of the spectrum of gravitational waves. In this paper we give more details of the computations leading to these results.Comment: 12 pages, 3 figure

    Trans-Planckian Physics and the Spectrum of Fluctuations in a Bouncing Universe

    Get PDF
    In this paper, we calculate the spectrum of scalar field fluctuations in a bouncing, asymptotically flat Universe, and investigate the dependence of the result on changes in the physics on length scales shorter than the Planck length which are introduced via modifications of the dispersion relation. In this model, there are no ambiguities concerning the choice of the initial vacuum state. We study an example in which the final spectrum of fluctuations depends sensitively on the modifications of the dispersion relation without needing to invoke complex frequencies. Changes in the amplitude and in the spectral index are possible, in addition to modulations of the spectrum. This strengthens the conclusions of previous work in which the spectrum of cosmological perturbations in expanding inflationary cosmologies was studied, and it was found that, for dispersion relations for which the evolution is not adiabatic, the spectrum changes from the standard prediction of scale-invariance.Comment: 10 pages, 6 figures, RevTeX4. Analytical determination of the spectrum, corrected some typos, conclusions unchange

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    The Coherent State Representation of Quantum Fluctuations in the Early Universe

    Get PDF
    Using the squeezed state formalism the coherent state representation of quantum fluctuations in an expanding universe is derived. It is shown that this provides a useful alternative to the Wigner function as a phase space representation of quantum fluctuations. The quantum to classical transition of fluctuations is naturally implemented by decohering the density matrix in this representation. The entropy of the decohered vacua is derived. It is shown that the decoherence process breaks the physical equivalence between vacua that differ by a coordinate dependent phase generated by a surface term in the Lagrangian. In particular, scale invariant power spectra are only obtained for a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with corrections and significant new calculation

    DBI with Primordial Magnetic Field in the Sky

    Full text link
    In this paper, we study the generation of a large scale magnetic field with amplitude of order ÎŒ\muG in an inflationary model which has been introduced in hep-th/0310221. This inflationary model based on existence of a speed limit for inflaton field. Generating a mass for inflaton at scale above the ϕIR\phi_{IR}, breaks the conformal triviality of the Maxwell equation and causes to originate a magnetic field during the inflation. The amplitude strongly depends on the details of reheating stage and also depends on the e-foldings parameter N. We find the amplitude of the primordial magnetic field at decoupling time in this inflationary background using late time behavior of the theory.Comment: 12 pages, no figure, typos correcte
    • 

    corecore