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In this paper, we calculate the spectrum of scalar field fluctuations in a bouncing, asymptotically
flat Universe, and investigate the dependence of the result on changes in the physics on length scales
shorter than the Planck length which are introduced via modifications of the dispersion relation. In
this model, there are no ambiguities concerning the choice of the initial vacuum state. We study an
example in which the final spectrum of fluctuations depends sensitively on the modifications of the
dispersion relation without needing to invoke complex frequencies. Changes in the amplitude and
in the spectral index are possible, in addition to modulations of the spectrum. This strengthens
the conclusions of previous work in which the spectrum of cosmological perturbations in expanding
inflationary cosmologies was studied, and it was found that, for dispersion relations for which the
evolution is not adiabatic, the spectrum changes from the standard prediction of scale-invariance.

I. INTRODUCTION

The dependence of the spectrum of cosmological fluctuations in an inflationary Universe on hidden assumptions
about the physics on length scales much smaller than the Planck length has been recently studied in Refs. [1–3]. A
priori this dependence comes about since in typical scalar-field-driven inflationary models the duration of the period
of expansion is so long that the physical wavelengths of comoving modes which correspond to the present large-scale
structure of the Universe are much smaller than the Planck length at the beginning of inflation. In weakly coupled
scalar field models of inflation, the spectrum of fluctuations is calculated by assuming that fluctuation modes start
out in the vacuum (i.e. minimum energy density) state at the beginning of inflation and subsequently evolve as
determined by the equations of motion. It is hence not unreasonable to expect that modifications of the physics on
trans-Planckian scales could affect the final spectrum of fluctuations.

While the correct theory of trans-Planckian physics is not known, possible effects of the new physics can be modeled
by changes in the dispersion relation of the fields corresponding to linear cosmological fluctuations. Such an approach
was used earlier [4,5] to study the possible dependence of the spectrum of black hole radiation on trans-Planckian
physics. Indeed, for a class of dispersion relations which deviate so strongly from the usual one such that the evolution
of the mode functions is highly non-adiabatic and the effective frequency becomes imaginary, it was found that the
spectrum of fluctuations is modified in a significant way compared to what is obtained for a linear dispersion relation
[1,2]. As shown in [7–9], the final spectrum of fluctuations is unchanged if the change in the dispersion relation is
not too drastic, the wave function evolves adiabatically, and hence the WKB approximation is valid throughout the
evolution.

Two major deficiencies in the previous work concerned the choice of initial conditions and the fact that complex
dispersion relations were required in order to obtain significant deviations from the standard results. In the previous
papers, the assumption was made that the state starts out as the one minimizing the energy density. However, if the
dispersion relation differs greatly from the linear one, in particular if it becomes complex, the physical motivation
for choosing this state becomes unclear. This problem does not arise in a bouncing Universe. In this case, modes
corresponding to present cosmological scales could well have had a physical wavelength smaller than the Planck
length at the bounce point, but at early (pre-bounce) times, the wavelength was larger than the Planck length. In

∗Address from 9/15/2001 - 3/15/2002: Theory Division, CERN, CH-1211 Geneva 23, Switzerland.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25327648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


this context, initial conditions can be set up at some very early pre-bounce time during which the mode obeys a linear
dispersion relation and the physical meaning of the minimum energy density state is clear. It is thus interesting to
study the spectrum of fluctuations in a bouncing Universe which is asymptotically flat such that the choice of initial
vacuum becomes unambiguous. It is also interesting to exhibit a case where complex dispersion relations are not
needed. Although complex frequencies are standard in classical physics and in quantum mechanics, they seem to be
more problematic in the context of quantum field theory.

In this article, we find an example of a bouncing Universe in which the spectrum of fluctuations depends sensitively
on changes in the physics at length scales smaller than the Planck length, without requiring complex frequencies at
high wavenumbers, thus improving on the second major deficiency of previous work. Another reason for investigating
the dependence of the spectrum of fluctuations on modifications of trans-Planckian physics in a bouncing Universe
is that one could expect (however, as we show, this is not correct) that the deviations in the spectrum incurred
during the pre-bounce period when the wavelength is blue-shifting in the trans-Planckian regime will cancel with the
deviation in the post-bounce trans-Planckian regime when the mode is being red-shifted. Such a result would then
lead to the expectation that the results on the dependence of the spectrum of fluctuations on changes in the trans-
Planckian physics might be different in the case of black holes and (non-bounce) inflationary cosmology. A third reason
for analyzing a bouncing Universe is that there has recently been a lot of interest in the field of string cosmology
in bouncing Universe models. In the Einstein frame, the pre-big-bang scenario [10] starts in a collapsing dilaton-
dominated phase, and the same is true in the Ekpyrotic scenario [11]. Our arguments show that trans-Planckian
effects could change the predictions of standard cosmological perturbation theory in these examples 1.

A model for the evolution of the scale factor in a bouncing inflationary Universe is a(t) = a0cosh(Ht), where
a0 denotes the value of a(t) at the center of the bounce, and H is the Hubble expansion (contraction) rate during
the period of exponential expansion (contraction). The idea of the calculation is to assume an initial spectrum of
fluctuations at some early time −tf when the wavelength of all modes of interest is much larger than the Planck
length, to propagate the perturbation modes through the bounce and calculate the final spectrum at time tf . In this
model, one of the difficulties encountered in the previous work [1,2], namely the problem of specifying the initial state
in the trans-Planckian regime, is overcome. However, it is necessary now to set up initial conditions on wavelengths
which typically also are much larger than the Hubble radius. The latter problem can be overcome by considering a
bouncing Universe which is radiation-dominated in the asymptotic past and future, e.g. [16,17] a(η) =

√
α2 + β2η2,

where α and β are constants. Another toy model in which it is possible to set up well motivated initial conditions on
scales much smaller than the Hubble radius and at the same time much larger than the Planck scale is a model in
which the Universe is asymptotically flat both at large positive and negative times:

a(η) = `0 − `0 − `b

1 + (η/η0)2
(1)

where `0 and `b (with `b � `0) denote the asymptotic size of the Universe and the size at the bounce, respectively,
and η0 determines the time scale of the bounce, i.e. the time over which the scale factor changes. In the above, we
are using conformal time η, and employing the convention that the scale factor carries dimension of length while the
comoving coordinates (including conformal time) are dimensionless.

Finally, a comment is in order on the issue of backreaction. It has been shown in Refs. [18,9] that the energy
density of the particles created by trans-Planckian physics can contribute in a significant way to the background
energy density. We do not address this interesting question since this clearly comes as a second step once a case where
the spectrum is modified has been explicitly exhibited. In this paper we concentrate on the first question since it
would be useless to treat the backreaction question if no well-motivated example where the spectrum is modified can
be found. However, it should be clear that, once this is done (as shown in the present article), this problem becomes
the central question in the study of trans-Planckian physics in cosmology.

This article is organized as follows. In section II, we review the arguments which show that no change in the final
spectrum of fluctuations of a scalar matter field in a bouncing Universe is expected independent of the dispersion
relation, provided that the WKB approximation remains justified. We give a qualitative reason to expect changes in
the amplitude of the final spectrum for dispersion relations for which the adiabatic approximation breaks down. As
mentioned above, our analysis assumes that perturbation theory remains justified and back-reaction can be neglected
[18]. In Section III we study a concrete model, namely the asymptotically flat bouncing Universe given by (1) with a
dispersion relation modified in the trans-Planckian regime according to the prescription of Corley and Jacobson [5].
We show that, as expected, both the overall amplitude and the shape of the spectrum differ from what is obtained for

1Note that there is disagreement on the result of the linear theory of fluctuations in the Ekpyrotic scenario [11–15]
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the linear dispersion relation, without ever requiring the effective frequency to become imaginary. The change in the
spectrum is produced by an interesting combination of effects due to the modified dispersion relation and the driving
term for Parker particle production [19].

II. METHOD AND QUALITATIVE CONSIDERATIONS

The equation of motion for a minimally coupled free scalar matter field Φ(η, x) in a Universe with scale factor a(η)
in momentum space takes on the simple form

µ′′ +
(

n2 − a′′

a

)
µ = 0 , (2)

making use of the re-scaling

Φ(η, x) =
1

(2π)3/2

1
a(η)

∫
dnµ(n, η)ein·x , (3)

where n denotes the comoving wavenumber linked to the physical wavenumber by the relation k = n/a(η). In the
above, a prime denotes the derivative with respect to conformal time. The previous equations are valid for a spacetime
with flat spatial sections. The advantage of considering a test scalar field and/or gravitational waves is that we do not
need to address the origin of the dynamics of the scale factor. This is in contrast to the case of density perturbations.
However, the Friedmann equation reads H2/a2 +K/a2 = κ

∑
i ρi/3, where H ≡ a′/a and ρi > 0 is the energy density.

This means that a bounce is consistent with the Einstein equations only if K = 1. For K = 0, it would imply ρi = 0
for each component. Therefore, it seems that it is inconsistent to use Eq. (2) if the scale factor behaves such that
there is a bounce. There are two ways out of the previous argument. The first one is the following. If K = 1,
then Eq. (2) takes the form µ′′ + (n2 − K − a′′/a)µ = 0. In addition the eigenfunctions of the three-dimensional
Laplacian operator are no longer planes waves. However, if we restrict ourselves to modes with wavelengths much
smaller than the curvature radius, then they do not feel the curvature of the spacelike section and we can safely
work with Eq. (2). It could be checked that this is indeed the case for the wavenumbers considered in the example
presented in the following section. Another possibility is to use the “nonsingular Universe construction” [20]. In this
case, it is definitely possible to get a spatially flat bounce. What happens is that the higher derivative terms become
important at the bounce and enable the evasion of the previous argument by supplying other terms in the analog of
the first Friedmann equation. In conclusion, although in this article we consider a scale factor with a bounce, we can
nevertheless work with Eq. (2), i.e. we let the nonsingular Universe construction enter only via the scale factor.

The method introduced in [4,5] to study the dependence of the spectrum of fluctuations on trans-Planckian physics
is to replace the linear dispersion relation ω

phys
= k by a non standard dispersion relation ω

phys
= ω

phys
(k) where the

function ω
phys

(k) is a priori arbitrary. In the context of cosmology, it has been shown in Ref. [1,2] that this amounts
to replacing n2 appearing in (2) with n2

eff(n, η) defined by

n2 → n2
eff(n, η) ≡ a2(η)ω2

phys

[
n

a(η)

]
. (4)

For a fixed comoving mode, this implies that the dispersion relation becomes time-dependent. Various forms for neff

have been used, e.g.

neff(n, η) = n
λ(η)
`C

tanh1/p

[(
`C

λ(η)

)p]
, n2

eff(n, η) = n2 + n2bm

[
`C

λ(η)

]2m

, (5)

the first being a generalization of the relation studied by Unruh [4] whereas the second one is a generalization of the
relations used by Corley and Jacobson [5]. In the above, λ(η) is the physical wavelength, `C is the cutoff length (which
can be taken to be the Planck length), p and m are integers, and bm is a real number which can be either positive or
negative. Thus, the equation of motion to be analyzed is

µ′′ +
[
n2

eff(n, η)− a′′

a

]
µ = 0 . (6)

For fixed comoving wavenumber n, the evolution of µ depends crucially on which region η lies in. The first region
is the trans-Planckian region with
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λ(η) � `C (Region 1) . (7)

Let us first consider the standard inflationary scale factor and a monotonic dispersion relation [like the first one in
Eq. (5) or the second one with bm > 0]. This means that, initially, the term n2

eff(n, η) dominates in Eq. (6). The
initial conditions are fixed in this region and since the WKB approximation is applicable, we can choose the initial
state as the “minimizing energy state” [21]. Then, the (positive frequency) solution is given by

µ(η) ' 1√
2neff(n, η)

exp
[
−i

∫ η

ηi

neffdτ

]
, (8)

where ηi is some initial time.
The second region corresponds to

λ � `C and n2 � a′′/a (Region 2) . (9)

In this region the mode has reached the linear part of the dispersion relation. The general solution in Region 2 is the
plane wave

µ = B1 exp(−inη) + B2 exp(inη) (10)

with constant coefficients B1 and B2. For the standard dispersion relation, the initial conditions are fixed in this
region. The usual choice of the vacuum state is B1 = 1/

√
2n, B2 = 0. In general B1 and B2 are determined by the

matching conditions between Regions 1 and 2. However, if the dynamics is adiabatic throughout (in particular if the
a′′/a term is negligible), the WKB approximation holds and the solution is always given by (8). Therefore, if we start
with B2 = 0 and uses this solution, one finds that B2 remains zero at all times. Deep in the region where neff ' n
the solution becomes

µ(η) ' 1√
2n

exp(−iφ− inη), (11)

i.e. the standard vacuum solution times a phase which will disappear when we calculate the modulus. The phase φ
is given by φ ≡ ∫ η1

ηi
neffdτ , where η1 is the time at which neff ' n.

The situation changes dramatically if we consider non-monotonic dispersion relations. This is the case if bm < 0
in Eq. (5) or for the dispersion relation introduced in Ref. [22]. Two new features can occur. Either the dispersion
relation can become complex (this is in general the case if bm < 0) or the term a′′/a dominates (this is the case
for the dispersion relation introduced in Ref. [22] or for the Corley/Jacobson dispersion relation with bm < 0 for a
certain range of comoving wavenumbers). In this case, the WKB approximation is violated in Region 1 and we expect
changes in the final spectrum. Unfortunately, in the context of the standard increasing inflationary scale factor, one
also looses the ability to fix natural initial conditions. However, this is no longer true if the spacetime is asymptotically
flat because then, at infinity, the term a′′/a goes to zero, see also Ref. [23]. Therefore, in this case, we can choose
well-motivated initial conditions. A good example of such a situation is provided by a bouncing Universe. From the
above considerations, we expect that in this case the final spectrum is modified and the initial conditions can be fixed
naturally. As an additional benefit, complex frequencies can be avoided. In the next section, we consider a toy model
where these qualitative arguments can be implemented concretely, at the level of equations.

III. A SPECIFIC EXAMPLE

We will now illustrate the qualitative arguments of the previous section with a concrete quantitative example. We
take the asymptotically flat bouncing Universe given by (1). We consider the type of modified dispersion relation for
which in the case of an expanding inflationary Universe the deviations in the spectrum were found [1,2], namely the
(generalization of the) Corley/Jacobson dispersion relation (5) with bm negative. In this case, ω

phys
(k) is given by

ω2
phys

(k) = k2 − |bm|k2

(
k2

k2
C

)m

, (12)

where kC is the cutoff physical wavenumber. The dispersion relation is represented in Fig. (1).
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FIG. 1. Corley/Jacobson dispersion relation for m = 1 and |bm| = 1. In general ω2
phys

(k) vanishes at k = kC|bm|−1/(2m). For

k > kC|bm|−1/(2m), the physical frequency becomes imaginary.

The behavior of the solutions of the equation of motion µ′′ + µ(n2
eff − a′′/a) = 0 is determined by the competition

between the two terms n2
eff and a′′/a given by

n2
eff(n, η) = n2 − n2 |bm|

`−2m
C

(
n

2π

)2m[
`0 − `0 − `b

1 + (η/η0)2

]−2m

,
a′′

a
=

2(`0 − `b)
η2
0`b

1− 3(η/η0)2

[1 + (η/η0)2]3
, (13)

where `C ≡ 1/kC is the cutoff length. These two terms are represented in Fig. (2). When n2
eff > a′′/a, which is always

the case when η/η0 → ±∞, the WKB approximation is valid and the fundamental solutions can be written as

µ ' 1√
2neff

exp
[
±i

∫ η

neff(n, τ)dτ

]
→η/η0→±∞

1√
2n

e±inη. (14)

In this case, the physical wavenumbers of the modes are such that they correspond to the linear part of the dispersion
relation, see Fig. (1). In this situation, natural initial conditions can be chosen. Note that these initial conditions
are, in a sense, even “more standard” than in the previous studies on trans-Planckian physics since usually the initial
conditions are set in a region where the dispersion relation is not linear (but, as explained above, since the WKB
approximation holds, meaningful initial conditions can nevertheless be considered). On the contrary, when n2

eff < a′′/a
the WKB approximation is violated and two independent solutions are given by

µ ' a(η), µ ' a(η)
∫ η dτ

a2(τ)
. (15)

In this case, we are close to the cutoff scale and ω2
phys

(k) being close to zero [see Fig. (1)] the a′′/a term dominates.
This situation is very similar to the one discussed in Ref. [22] where this part of the dispersion relation has been
named “the tail”.
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FIG. 2. The solid curve is a′′/a, the dashed one n2
eff . The values used are `0 = 5000, `b = 10, `C = 1, |bm| = 1, m = 1 and

n = 60.

In a bouncing Universe, the modes start in the linear part of the dispersion relation, pass through the non-linear part
and then come back in the standard region. However, things are not so simple because there exists a range of comoving
wavenumbers such that the dispersion relation becomes complex. Although this case is a priori interesting, it clearly
requires more speculative considerations, in particular the quantization in the presence of imaginary frequency modes.
Since our goal in this paper is to exhibit a case where everything can be done in a standard manner, we will restrict
ourselves to modes which never enter the region where the dispersion relation becomes complex. In the following, we
determine the range of comoving wavenumbers we are interested in and for which we are going to calculate the power
spectrum.

The maximum of the absolute value of a′′/a is located at η = 0 and is given by (2/η2
0)(`0/`b − 1). Therefore, if we

restrict ourselves to modes such that

n � nb ≡
√

2
η0

(
`0

`b
− 1

)1/2

, (16)

then one is sure that, with an unmodified dispersion relation, the term a′′/a can always be neglected and that the
initial spectrum is never changed. Clearly, this is not a physical restriction but it renders the comparison with the
case with a modified dispersion relation easier. The minimum of the modified part of the dispersion relation is given
by (from now on, we consider the case |bm| = 1 and m = 1 since it is more convenient and does not restrict the
physical content of the problem in any way)

n2
eff(n, η = 0) = n2

[
1−

(
n

ninf

)2]
, ninf ≡ 2π

`b

`C
. (17)

Therefore, to maintain a real dispersion relation, we should only consider modes such that n < ninf . Of course, for
consistency, the parameters of the model must be chosen such that nb < ninf . In the following, the time ηj(n) such
that

n2
eff(n, ηj) =

a′′

a
(18)

will play a crucial role. For convenience we will only consider values of n such that this time is determined only by
the central peak of a′′/a and not by the two wings. In practice, this amounts to taking n2

eff(n,∞) > n2
b/4 since n2

b/4
is the maximum height of the wings. Then it is easy to show that n2 ∈ [n2−, n2

+] where

n2
± =

n2
sup

2

(
1±

√
1− n2

b

n2
sup

)
, (19)
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where nsup ≡ 2π`0/`C is the largest value of n such that n2
eff(n,∞) remains real. Therefore, the range we are interested

in is given by

max(n2
b, n2

−) < n2 < min(n2
inf , n

2
+). (20)

In practice, we have n2
− ' (1/4)n2

b and n2
+ ' n2

sup. This means that max(n2
b, n2

−) = n2
b, min(n2

inf , n
2
+) = n2

inf and
that the range reduces to

n2
b < n2 < n2

inf . (21)

Having determined the relevant wavenumbers, we can now choose the initial condition and solve the equation of
motion. In the first region where η < −ηj(n), we only consider positive frequency modes and we have

µI(η) =
1√

2neff
exp

[
−i

∫ η

ηi

neff(n, τ)dτ

]
, (22)

where ηi is an arbitrary initial time. In the second region, where −ηj(n) < η < ηj(n), the solution is given by

µII(η) = B1a(η) + B2a(η)
∫ η

0

dτ

a2(τ)
. (23)

The lower bound of the integral is a priori arbitrary. However, it is very convenient to take it equal to zero because
in this case the second branch becomes odd whereas the first one (i.e. the scale factor) is even. Then, it is easy to
show that ∫ η

0

dτ

a2(τ)
=

1
p2

η

η0
+

1− 2p + p2

2p2[1 + p(η/η0)2]
η

η0
+

p2 + 2p− 3
2p5/2

arctan
(√

p
η

η0

)
, (24)

where p ≡ `0/`b. Finally, the solution in the third region where η > ηj(n) can be written as

µIII(η) =
C1√
2neff

exp
[
−i

∫ η

ηi

neff(n, τ)dτ

]
+

C2√
2neff

exp
[
+i

∫ η

ηi

neff(n, τ)dτ

]
. (25)

The goal is now to calculate the coefficients C1 and C2. Using the continuity of the mode function µ and of its
derivative, we find

C1(n) =
i

2W [−ηj(n)]
ei[Ω(ηj)−Ω(−ηj)]√

neff(n,−ηj)neff(n, ηj)

{
−[g′ + αg](−ηj)[f ′ + ᾱf ](ηj) + [f ′ + αf ](−ηj)[g′ + ᾱg](ηj)

}
, (26)

C2(n) =
−i

2W [−ηj(n)]
ei[Ω(ηj)+Ω(−ηj)]√

neff(n,−ηj)neff(n, ηj)

{
−[g′ + αg](−ηj)[f ′ + αf ](ηj) + [f ′ + αf ](−ηj)[g′ + αg](ηj)

}
, (27)

where we have used the short-hand notation f ≡ a(η) and g ≡ a(η)
∫ η

0 dτ/a2(τ). We have also utilized the following
definitions: W ≡ gf ′ − g′f is the Wronskian, Ω(η) ≡ ∫ η

ηi
neff(n, τ)dτ , and the quantity α is

α ≡ n′eff
2neff

+ ineff . (28)

Using the fact that neff is even, it is easy to see that α(n,−η) = −ᾱ(n, η). Using the same property, one could also
simplify the factor

√
neff(n,−ηj)neff(n, ηj) = neff(n, ηj) in the above equation. The final result is given by Eqs. (26),

(27) where all the functions are explicitly known except the function ηj = ηj(n). The dependence on the dispersion
relation of the final result is completely encoded in this function. The time ηj(n) is the solution of an algebraic
equation that is not possible to solve explicitly. However, we can find an approximation if the functions neff(n, η) and
a′′/a are Taylor expanded around η = 0. We find

n2
eff(n, η) ' n2 − n2

(
n

ninf

)2

(1− n2
bη2),

a′′

a
' n2

b

[
1− 6

(
η

η0

)2]
. (29)

The two functions and their approximations are represented in Fig. (3).
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FIG. 3. The solid curve represents a′′/a, the dot-dashed curve its quadratic approximation. The dashed curve represents
n2

eff , and its quadratic approximation is the fourth curve. Values chosen are `0 = 5000, `b = 10, `C = 1, |bm| = 1, m = 1 and
n = 60.

We see now that ηj(n) is the solution of a quadratic algebraic equation. Straightforward calculations give

η2
j (n) ' n2

n2
b

[(
n

ninf

)2

+
(

nb

n

)2

− 1
][

n2

(
n

ninf

)2

+
6
η2
0

]−1

. (30)

The function ηj(n) can also be found exactly by numerical calculations. We have done this computation by means
of a Fortran code. The comparison of the exact result with its approximation given in Eq. (30) is represented in Fig.
(4). The function neff(n, η = 0) is not monotonic and has a maximum around n ' 45 for the values of the parameters
considered in Fig. (4). For this value neff(n, η) is almost never smaller than a′′/a. It is clear that around this value the
approximation will be very good whereas for other values of n, especially for n ' nb, the approximation will be less
good. This is due to the fact that when n approaches nb, the asymptotic value of neff(n, η) decreases and the curve
opens out at the intersection with a′′/a. A a consequence, the quadratic approximation employed above breaks down.
This is confirmed by the plots in Fig. (4). The approximation can be less good for other values of the parameters.
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FIG. 4. The dependence of the matching time ηj(n) on the wave number n for the values `0 = 5000, `b = 10, `C = 1,
|bm| = 1, m = 1. The solid curve is the exact result determined numerically, the curve marked with × is obtained using the
analytical approximations.

Everything is now known. We can either plug Eq. (30) into Eqs. (26), (27) to get analytical estimates of the
coefficients C1 and C2, or insert the exact function ηj(n) to get more accurate results. The modulus of the complex
numbers C1 and C2 are represented in Fig. (5).

FIG. 5. The dependence of the coefficients C1 and C2 on the wave number n for the values `0 = 5000, `b = 10, `C = 1,
|bm| = 1, m = 1. The solid curves are the ones determined numerically without any approximation, the curves makes with ×
are obtained using the analytical approximation.

The standard result for these quantities is |C1| = 1/
√

2n, |C2| = 0. Therefore the fact that |C2| ' |C1| 6= 0 is a proof
that the spectrum has changed. We are not really interested in computing the details of the spectrum in this case since
the present example is only a toy model. But we see that the approximation used breaks down when n approaches
nb in agreement with the considerations above. We also see that the deviation is minimum around n ' 45 (for these
values of the parameters) because, as already mentioned above, in this case the term a′′/a almost never dominates.
Finally, we notice that the order of magnitude of the two coefficients is the same and thus we expect oscillations in the
spectrum. This is because, when η → +∞, the solution is now of the form µ ' C1 exp(inη + φ1)+ C2 exp(−inη + φ2)
Thus, using the fact that |C1| ' |C2|, one has |µ|2 ' |C1|2 cos2(nη + φ), i.e. oscillations in the spectrum.

We have thus reached our main goal: find an example where the initial conditions can be fixed naturally, where the
frequency never becomes complex and where the final spectrum is modified. Note that in this example, the change in
the spectrum comes about from an interplay between the modified dispersion relation factor n2

eff and the factor a′′/a
which is responsible for Parker particle production [19]. For an unmodified linear dispersion relation, the a′′/a term
is always negligible and there is no particle production. However, for our modified dispersion relation, for a range of
modes the Parker particle production term becomes important and leads to non-adiabatic evolution. The length of
time during which the a′′/a term dominates depends on the specifics of the dispersion relation, and hence the final
spectrum will depend on these specifics.

IV. DISCUSSION

In this paper we have studied the dependence of the spectrum of a free scalar field in a bouncing Universe on
trans-Planckian effects introduced via a modification of the free field dispersion relation. We have found that both
the amplitude and the slope of the spectrum depend on the dispersion relation, assuming that the dispersion relation
leads to non-adiabatic evolution of the mode function on trans-Planckian physical length scales. Such non-adiabatic
evolution is possible without requiring the effective frequency to become imaginary.

This result supports our earlier work which shows that the spectrum of cosmological fluctuations in inflationary
cosmology can depend sensitively on trans-Planckian physics [1,2]2 . The calculation we presented here is free of two

2Note that results supporting [1,2] were recently also obtained by [24] (see also Ref. [25]) in the context of a mode equation
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of the possible objections against the earlier work. The first objection was that the use of the minimum energy density
state as initial state is not well defined on trans-Planckian scales if the dispersion relation differs dramatically from
the linear one (which it has to in order to get non-adiabatic evolution). In our present work, the initial conditions
are set in the low curvature region and on length scales larger than the cutoff length but smaller than the Hubble
radius, where the choice of initial vacuum state is well defined. The second objection concerned the use of dispersion
relations for which the effective frequency is imaginary in some time interval. No imaginary frequencies are used in
the present model.

The results obtained in this paper apply both to bouncing Universe backgrounds described by the two other models
mentioned in the Introduction. In the case of the first model (where the scale factor is given by an hyperbolic cosine),
similar results would hold if we would match the local Minkowski vacuum (WKB vacuum) at some initial time and
express the results in terms of the WKB vacuum state at the corresponding post-bounce time. However, in that
case, the initial conditions are not easy to justify since they have to be set on length scales larger than the Hubble
radius. Obviously, we could consider that model and let the scale factor make a further transition to an asymptotically
radiation- dominated or asymptotically flat stage at very large initial and final times. In this case, it is very likely
that results similar to the ones we obtained here in model (1) would be obtained.
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