18 research outputs found
Numerical method for expectations of piecewise-determistic Markov processes
We present a numerical method to compute expectations of functionals of a
piecewise-deterministic Markov process. We discuss time dependent functionals
as well as deterministic time horizon problems. Our approach is based on the
quantization of an underlying discrete-time Markov chain. We obtain bounds for
the rate of convergence of the algorithm. The approximation we propose is
easily computable and is flexible with respect to some of the parameters
defining the problem. Two examples illustrate the paper.Comment: 41 page
Numerical methods for the exit time of a piecewise-deterministic Markov process
We present a numerical method to compute the survival function and the
moments of the exit time for a piecewise-deterministic Markov process (PDMP).
Our approach is based on the quantization of an underlying discrete-time Markov
chain related to the PDMP. The approximation we propose is easily computable
and is even flexible with respect to the exit time we consider. We prove the
convergence of the algorithm and obtain bounds for the rate of convergence in
the case of the moments. An academic example and a model from the reliability
field illustrate the paper
Optimal stopping for partially observed piecewise-deterministic Markov processes
This paper deals with the optimal stopping problem under partial observation
for piecewise-deterministic Markov processes. We first obtain a recursive
formulation of the optimal filter process and derive the dynamic programming
equation of the partially observed optimal stopping problem. Then, we propose a
numerical method, based on the quantization of the discrete-time filter process
and the inter-jump times, to approximate the value function and to compute an
actual -optimal stopping time. We prove the convergence of the
algorithms and bound the rates of convergence
Numerical methods for piecewise-deterministic Markov processes
Les processus markoviens déterministes par morceaux (PMDM) ont été introduits dans la littérature par M.H.A. Davis en tant que classe générale de modèles stochastiques non-diffusifs. Les PMDM sont des processus hybrides caractérisés par des trajectoires déterministes entrecoupées de sauts aléatoires. Dans cette thèse, nous développons des méthodes numériques adaptées aux PMDM en nous basant sur la quantification d'une chaîne de Markov sous-jacente au PMDM. Nous abordons successivement trois problèmes : l'approximation d'espérances de fonctionnelles d'un PMDM, l'approximation des moments et de la distribution d'un temps de sortie et le problème de l'arrêt optimal partiellement observé. Dans cette dernière partie, nous abordons également la question du filtrage d'un PMDM et établissons l'équation de programmation dynamique du problème d'arrêt optimal. Nous prouvons la convergence de toutes nos méthodes (avec le plus souvent des bornes de la vitesse de convergence) et les illustrons par des exemples numériques.Piecewise-deterministic Markov processes (PDMP’s) have been introduced by M.H.A. Davis as a general class of non-diffusive stochastic models. PDMP’s are hybrid Markov processes involving deterministic motion punctuated by random jumps. In this thesis, we develop numerical methods that are designed to fit PDMP's structure and that are based on the quantization of an underlying Markov chain. We deal with three issues : the approximation of expectations of functional of a PDMP, the approximation of the moments and of the distribution of an exit time and the partially observed optimal stopping problem. In the latter one, we also tackle the filtering of a PDMP and we establish the dynamic programming equation of the optimal stopping problem. We prove the convergence of all our methods (most of the time, we also obtain a bound for the speed of convergence) and illustrate them with numerical examples
Numerical methods for piecewise-deterministic Markov processes
Les processus markoviens déterministes par morceaux (PMDM) ont été introduits dans la littérature par M.H.A. Davis en tant que classe générale de modèles stochastiques non-diffusifs. Les PMDM sont des processus hybrides caractérisés par des trajectoires déterministes entrecoupées de sauts aléatoires. Dans cette thèse, nous développons des méthodes numériques adaptées aux PMDM en nous basant sur la quantification d'une chaîne de Markov sous-jacente au PMDM. Nous abordons successivement trois problèmes : l'approximation d'espérances de fonctionnelles d'un PMDM, l'approximation des moments et de la distribution d'un temps de sortie et le problème de l'arrêt optimal partiellement observé. Dans cette dernière partie, nous abordons également la question du filtrage d'un PMDM et établissons l'équation de programmation dynamique du problème d'arrêt optimal. Nous prouvons la convergence de toutes nos méthodes (avec le plus souvent des bornes de la vitesse de convergence) et les illustrons par des exemples numériques.Piecewise-deterministic Markov processes (PDMP’s) have been introduced by M.H.A. Davis as a general class of non-diffusive stochastic models. PDMP’s are hybrid Markov processes involving deterministic motion punctuated by random jumps. In this thesis, we develop numerical methods that are designed to fit PDMP's structure and that are based on the quantization of an underlying Markov chain. We deal with three issues : the approximation of expectations of functional of a PDMP, the approximation of the moments and of the distribution of an exit time and the partially observed optimal stopping problem. In the latter one, we also tackle the filtering of a PDMP and we establish the dynamic programming equation of the optimal stopping problem. We prove the convergence of all our methods (most of the time, we also obtain a bound for the speed of convergence) and illustrate them with numerical examples
Méthodes numériques pour les processus markoviens déterministes par morceaux
Piecewise-deterministic Markov processes (PDMP's) have been introduced by M.H.A. Davis as a general class of non-diffusive stochastic models. PDMP's are hybrid Markov processes involving deterministic motion punctuated by random jumps. In this thesis, we develop numerical methods that are designed to fit PDMP's structure and that are based on the quantization of an underlying Markov chain. We deal with three issues : the approximation of expectations of functional of a PDMP, the approximation of the moments and of the distribution of an exit time and the partially observed optimal stopping problem. In the latter one, we also tackle the filtering of a PDMP and we establish the dynamic programming equation of the optimal stopping problem. We prove the convergence of all our methods (most of the time, we also obtain a bound for the speed of convergence) and illustrate them with numerical examples.Les processus markoviens déterministes par morceaux (PMDM) ont été introduits dans la littérature par M.H.A. Davis en tant que classe générale de modèles stochastiques non-diffusifs. Les PMDM sont des processus hybrides caractérisés par des trajectoires déterministes entrecoupées de sauts aléatoires. Dans cette thèse, nous développons des méthodes numériques adaptées aux PMDM en nous basant sur la quantification d'une chaîne de Markov sous-jacente au PMDM. Nous abordons successivement trois problèmes : l'approximation d'espérances de fonctionnelles d'un PMDM, l'approximation des moments et de la distribution d'un temps de sortie et le problème de l'arrêt optimal partiellement observé. Dans cette dernière partie, nous abordons également la question du filtrage d'un PMDM et établissons l'équation de programmation dynamique du problème d'arrêt optimal. Nous prouvons la convergence de toutes nos méthodes (avec le plus souvent des bornes de la vitesse de convergence) et les illustrons par des exemples numériques
Méthodes numériques pour les processus markoviens déterministes par morceaux
Les processus markoviens déterministes par morceaux (PMDM) ont été introduits dans la littérature par M.H.A. Davis en tant que classe générale de modèles stochastiques non-diffusifs. Les PMDM sont des processus hybrides caractérisés par des trajectoires déterministes entrecoupées de sauts aléatoires. Dans cette thèse, nous développons des méthodes numériques adaptées aux PMDM en nous basant sur la quantification d'une chaîne de Markov sous-jacente au PMDM. Nous abordons successivement trois problèmes : l'approximation d'espérances de fonctionnelles d'un PMDM, l'approximation des moments et de la distribution d'un temps de sortie et le problème de l'arrêt optimal partiellement observé. Dans cette dernière partie, nous abordons également la question du filtrage d'un PMDM et établissons l'équation de programmation dynamique du problème d'arrêt optimal. Nous prouvons la convergence de toutes nos méthodes (avec le plus souvent des bornes de la vitesse de convergence) et les illustrons par des exemples numériques.Piecewise-deterministic Markov processes (PDMP s) have been introduced by M.H.A. Davis as a general class of non-diffusive stochastic models. PDMP s are hybrid Markov processes involving deterministic motion punctuated by random jumps. In this thesis, we develop numerical methods that are designed to fit PDMP's structure and that are based on the quantization of an underlying Markov chain. We deal with three issues : the approximation of expectations of functional of a PDMP, the approximation of the moments and of the distribution of an exit time and the partially observed optimal stopping problem. In the latter one, we also tackle the filtering of a PDMP and we establish the dynamic programming equation of the optimal stopping problem. We prove the convergence of all our methods (most of the time, we also obtain a bound for the speed of convergence) and illustrate them with numerical examples.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
Numerical method to compute the law of exit times for piecewise deterministic Markov processes
International audienc