277 research outputs found
Absolute rate coefficients for photorecombination of berylliumlike and boronlike silicon ions
We report measured rate coefficients for electron-ion recombination for Si10+
forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were
performed using the electron-ion merged-beams technique at a heavy-ion storage
ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from
0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban
et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally
derived rate coefficients for the recombination of Si9+ and Si10+ ions in a
plasma are presented along with simple parameterizations. These rate
coefficients are useful for the modeling of the charge balance of silicon in
photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas
(Si10+ only). In the corresponding temperature ranges, the experimentally
derived rate coefficients agree with the latest corresponding theoretical
results within the experimental uncertainties.Comment: 17 pages, 7 figures, 3 tables, 66 references, submitted to the J.
Phys. B special issue on atomic and molecular data for astrophysicist
Nuclear deformation effect on the binding energies in heavy ions
Nuclear deformation effects on the binding energies in heavy ions are
investigated. Approximate formulas for the nuclear-size correction and the
isotope shift for deformed nuclei are derived. Combined with direct numerical
evaluations, these formulas are employed to reanalyse experimental data on the
nuclear-charge-distribution parameters in and to revise the
nuclear-size corrections to the binding energies in H- and Li-like
. As a result, the theoretical uncertainties for the
ground-state Lamb shift in and for the
transition energy in are significantly reduced. The
isotope shift of the transition energies for
and is also evaluated
including nuclear size and nuclear recoil effects within a full QED treatment.Comment: 19 pages, 5 table
Beam lifetimes and ionization cross sections of U
Beam lifetimes of stored U^{28+} ions with energies between 10 and 180ââMeV/u were measured in the heavy ion synchrotron SIS18 and in the experimental storage ring (ESR) of the GSI accelerator facility. By using the internal gas jet target of the ESR, it was possible to obtain projectile ionization cross sections for collisions with H_{2} and N_{2} from the lifetime data. The experimental cross sections are compared to theoretical data predicted by the n-body classical-trajectory Monte Carlo (CTMC) method of Olson et al. and to calculations of Shevelko et al. using the LOSS-R code. In addition, both theoretical approaches are probed by using the resulting cross sections as input parameters for the STRAHLSIM code, which models the beam losses and, consequently, the lifetimes in the heavy ion synchrotron SIS18. Both the cross section measurement and the SIS18 lifetime study indicate that the LOSS-R code cross sections are in better agreement with the experimental results than the n-body CTMC calculations
Radiative recombination of bare Bi83+: Experiment versus theory
Electron-ion recombination of completely stripped Bi83+ was investigated at
the Experimental Storage Ring (ESR) of the GSI in Darmstadt. It was the first
experiment of this kind with a bare ion heavier than argon. Absolute
recombination rate coefficients have been measured for relative energies
between ions and electrons from 0 up to about 125 eV. In the energy range from
15 meV to 125 eV a very good agreement is found between the experimental result
and theory for radiative recombination (RR). However, below 15 meV the
experimental rate increasingly exceeds the RR calculation and at Erel = 0 eV it
is a factor of 5.2 above the expected value. For further investigation of this
enhancement phenomenon the electron density in the interaction region was set
to 1.6E6/cm3, 3.2E6/cm3 and 4.7E6/cm3. This variation had no significant
influence on the recombination rate. An additional variation of the magnetic
guiding field of the electrons from 70 mT to 150 mT in steps of 1 mT resulted
in periodic oscillations of the rate which are accompanied by considerable
changes of the transverse electron temperature.Comment: 12 pages, 14 figures, to be published in Phys. Rev. A, see also
http://www.gsi.de/ap/ and http://www.strz.uni-giessen.de/~k
The application of adjuvant autologous antravesical macrophage cell therapy vs. BCG in non-muscle invasive bladder cancer: a multicenter, randomized trial
<p>Abstract</p> <p>Introduction</p> <p>While adjuvant immunotherapy with Bacille Calmette Guérin (BCG) is effective in non-muscle-invasive bladder cancer (BC), adverse events (AEs) are considerable. Monocyte-derived activated killer cells (MAK) are discussed as essential in antitumoural immunoresponse, but their application may imply risks. The present trial compared autologous intravesical macrophage cell therapy (BEXIDEM<sup>Ÿ</sup>) to BCG in patients after transurethral resection (TURB) of BC.</p> <p>Materials and methods</p> <p>This open-label trial included 137 eligible patients with TaG1-3, T1G1-2 plurifocal or unifocal tumours and ℠2 occurrences within 24 months and was conducted from June 2004 to March 2007. Median follow-up for patients without recurrence was 12 months. Patients were randomized to BCG or mononuclear cells collected by apheresis after ex vivo cell processing and activation (BEXIDEM). Either arm treatment consisted of 6 weekly instillations and 2 cycles of 3 weekly instillations at months 3 and 6. Toxicity profile (primary endpoint) and prophylactic effects (secondary endpoint) were assessed.</p> <p>Results</p> <p>Patient characteristics were evenly distributed. Of 73 treated with BCG and 64 with BEXIDEM, 85% vs. 45% experienced AEs and 26% vs. 14% serious AEs (SAE), respectively (p < 0.001). Recurrence occurred significantly less frequent with BCG than with BEXIDEM (12% vs. 38%; p < 0.001).</p> <p>Discussion</p> <p>This initial report of autologous intravesical macrophage cell therapy in BC demonstrates BEXIDEM treatment to be safe. Recurrence rates were significantly lower with BCG however. As the efficacy of BEXIDEM remains uncertain, further data, e.g. marker lesions studies, are warranted.</p> <p>Trial registration</p> <p>The trial has been registered in the ISRCTN registry <url>http://isrctn.org</url> under the registration number ISRCTN35881130.</p
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,Îł) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
Recommended from our members
Recombination Measurements at Low Energies with Au49+,50+,51+ at the TSR
Recombination of Au49+, Au50+, and Au51+ ions has been studied at the TSR. With Au50+ ions a storage lifetime of only 2 to 4 s was observed with the magnetically expanded electron beam of the cooler at a density of ne = 107 cm-3. This short storage time is a consequence of the highest recombination rate coefficient ever observed with an atomic ion (1.8·10-6 cm3 s-1 at zero relative energy Erel = 0 between electrons and ions). At about 30 meV a huge dielectronic recombination resonance is found with a record small width of only about 15 meV. Such resonances fortuitously occurring near Erel=0 are probably the main reason for the enhanced recombination rates observed with Au50+, with Pb53+ (in a recent experiment at LEAR) as well as with other complex ions. For Au49+ and Au51+ the recombination rates are smaller by an order of magnitude
Recommended from our members
Recombination in Electron Coolers
An introduction to electron}ion recombination processes is given and recent measurements are described as examples, focusing on low collision energies. Discussed in particular are "ne-structure-mediated dielectronic recombination of #uorine-like ions, the moderate recombination enhancement by factors of typically 1.5}4 found for most ion species at relative electron}ion energies below about 10 meV, and the much larger enhancement occurring for speci"c highly charged ions of complex electronic structure, apparently caused by low-energy dielectronic recombination resonances. Recent experiments revealing dielectronic resonances with very large natural width are also described. 2000 Elsevier Science B.V. All rights reserved
- âŠ