343 research outputs found
Refractive elastic scattering of carbon and oxygen nuclei: The mean field analysis and Airy structures
The experimental data on the OC and OC elastic
scatterings and their optical model analysis are presented. Detailed and
complete elastic angular distributions have been measured at the Strasbourg
Vivitron accelerator at several energies covering the energy range between 5
and 10 MeV per nucleon. The elastic scattering angular distributions show the
usual diffraction pattern and also, at larger angles, refractive effects in the
form of nuclear rainbow and associated Airy structures. The optical model
analysis unambiguously shows the evolution of the refractive scattering
pattern. The observed structure, namely the Airy minima, can be consistently
described by a nucleus-nucleus potential with a deep real part and a weakly
absorptive imaginary part. The difference in absorption in the two systems is
explained by an increased imaginary (mostly surface) part of the potential in
the OC system. The relation between the obtained potentials and
those reported for the symmetrical OO and CC
systems is drawn.Comment: 10 pages, 9 figures, Phys. rev. C in pres
A Systematic Investigation of Light Heavy-Ion Reactions
We introduce a novel coupling potential for the scattering of deformed light
heavy-ion reactions. This new approach is based on replacing the usual
first-derivative coupling potential by a new, second derivative coupling
potential in the coupled-channels formalism. The new approach has been
successfully applied to the study of the C+C, C+Mg,
O+Si and O+Mg systems and made major improvements
over all the previous coupled-channels calculations for these systems. This
paper also shows the limitations of the standard coupled-channels theory and
presents a global solution to the problems faced in the previous theoretical
accounts of these reactions.Comment: 7 pages with 4 figure
Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering
We investigate the properties of the optical model wave function for light
heavy-ion systems where absorption is incomplete, such as Ca
and O around 30 MeV incident energy. Strong focusing effects
are predicted to occur well inside the nucleus, where the probability density
can reach values much higher than that of the incident wave. This focusing is
shown to be correlated with the presence at back angles of a strong enhancement
in the elastic cross section, the so-called ALAS (anomalous large angle
scattering) phenomenon; this is substantiated by calculations of the quantum
probability flux and of classical trajectories. To clarify this mechanism, we
decompose the scattering wave function and the associated probability flux into
their barrier and internal wave contributions within a fully quantal
calculation. Finally, a calculation of the divergence of the quantum flux shows
that when absorption is incomplete, the focal region gives a sizeable
contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The
figures are only available via anonynous FTP on
ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat
Application of Absorbing Boundary Condition to Nuclear Breakup Reactions
Absorbing boundary condition approach to nuclear breakup reactions is
investigated. A key ingredient of the method is an absorbing potential outside
the physical area, which simulates the outgoing boundary condition for
scattered waves. After discretizing the radial variables, the problem results
in a linear algebraic equation with a sparse coefficient matrix, to which
efficient iterative methods can be applicable. No virtual state such as
discretized continuum channel needs to be introduced in the method. Basic
aspects of the method are discussed by considering a nuclear two-body
scattering problem described with an optical potential. We then apply the
method to the breakup reactions of deuterons described in a three-body direct
reaction model. Results employing the absorbing boundary condition are found to
accurately coincide with those of the existing method which utilizes
discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX
A Global Potential Analysis of the O+Si Reaction Using a New Type of Coupling Potential
A new approach has been used to explain the experimental data for the
O+Si system over a wide energy range in the laboratory system
from 29.0 to 142.5 MeV. A number of serious problems has continued to plague
the study of this system for a couple of decades. The explanation of anomalous
large angle scattering data; the reproduction of the oscillatory structure near
the Coulomb barrier; the out-of-phase problem between theoretical predictions
and experimental data; the consistent description of angular distributions
together with excitation functions data are just some of these problems. These
are long standing problems that have persisted over the years and do represent
a challenge calling for a consistent framework to resolve these difficulties
within a unified approach. Traditional frameworks have failed to describe these
phenomena within a single model and have so far only offered different
approaches where these difficulties are investigated separately from one
another. The present work offers a plausible framework where all these
difficulties are investigated and answered. Not only it improves the
simultaneous fits to the data of these diverse observables, achieving this
within a unified approach over a wide energy range, but it departs for its
coupling potential from the standard formulation. This new feature is shown to
improve consistently the agreement with the experimental data and has made
major improvement on all the previous coupled-channels calculations for this
system.Comment: 21 pages with 12 figure
Total Reaction Cross Section in an Isospin-Dependent Quantum Molecular Dynamics (IDQMD) Model
The isospin-dependent quantum molecular dynamics (IDQMD) model is used to
study the total reaction cross section . The energy-dependent Pauli
volumes of neutrons and protons have been discussed and introduced into the
IDQMD calculation to replace the widely used energy-independent Pauli volumes.
The modified IDQMD calculation can reproduce the experimental well
for both stable and exotic nuclei induced reactions. Comparisons of the
calculated induced by with different initial density
distributions have been performed. It is shown that the calculation by using
the experimentally deduced density distribution with a long tail can fit the
experimental excitation function better than that by using the
Skyrme-Hartree-Fock calculated density without long tails. It is also found
that at high energy is sensitive to the long tail of density
distribution.Comment: 4 page, 4 fig
Toward a global description of the nucleus-nucleus interaction
Extensive systematization of theoretical and experimental nuclear densities
and of optical potential strengths exctracted from heavy-ion elastic scattering
data analyses at low and intermediate energies are presented.The
energy-dependence of the nuclear potential is accounted for within a model
based on the nonlocal nature of the interaction.The systematics indicate that
the heavy-ion nuclear potential can be described in a simple global way through
a double-folding shape,which basically depends only on the density of nucleons
of the partners in the collision.The poissibility of extracting information
about the nucleon-nucleon interaction from the heavy-ion potential is
investigated.Comment: 12 pages,12 figure
Quantum Tunneling in Nuclear Fusion
Recent theoretical advances in the study of heavy ion fusion reactions below
the Coulomb barrier are reviewed. Particular emphasis is given to new ways of
analyzing data, such as studying barrier distributions; new approaches to
channel coupling, such as the path integral and Green function formalisms; and
alternative methods to describe nuclear structure effects, such as those using
the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects,
higher-order couplings, and shape-phase transitions are elucidated. The current
status of the fusion of unstable nuclei and very massive systems are briefly
discussed.Comment: To appear in the January 1998 issue of Reviews of Modern Physics. 13
Figures (postscript file for Figure 6 is not available; a hard copy can be
requested from the authors). Full text and figures are also available at
http://nucth.physics.wisc.edu/preprints
Age Differences in Marriage: Exploring Predictors of Marital Quality in Husband-Older, Wife-Older, and Same-Age Marriages
Using data from a nationally representative sample of 723 married adults, this study explored the association of age differences between spouses at the time of marriage on various aspects of marital quality years into the marriage. Four groups (full sample, husband-older, wife-older, and same-age marriages) were compared to see how marital quality was affected by age difference and several other moderating variables. Spousal interactions increased among wife-older marriages, but not among the other groups. An increased level of husband participation in household labor was linked with an increase in marital happiness and a decrease in marital problems for wife-older marriages. It also was related to a decrease in marital happiness for husband-older marriages as well as a decrease in spousal interaction for all groups except wife-older marriages, which showed no significant association to the division of household labor. Finally, a more traditional approach to gender roles among the same-age marriages was associated with a decrease in marital problems and a decrease in spousal interaction
Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A
We present the results of a search for optical model potentials for use in
the description of elastic scattering and transfer reactions involving stable
and radioactive p-shell nuclei. This was done in connection with our program to
use transfer reactions to obtain data for nuclear astrophysics, in particular
for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B
using two (7Be,8B) proton transfer reactions. Elastic scattering was measured
using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about
E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted
and are compared with potentials obtained from a microscopic double folding
model. We use these results to find optical model potentials for unstable
nuclei with emphasis on the reliability of the description they provide for
peripheral proton transfer reactions. We discuss the uncertainty introduced by
the procedure in the prediction of the DWBA cross sections for the (7Be,8B)
reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files
- …
