208 research outputs found

    A multicenter, open-label, long-term safety and tolerability study of DFN-02, an intranasal spray of sumatriptan 10 mg plus permeation enhancer DDM, for the acute treatment of episodic migraine.

    Get PDF
    BackgroundDFN-02 is a novel intranasal spray formulation composed of sumatriptan 10 mg and a permeation-enhancing excipient comprised of 0.2% 1-O-n-Dodecyl-β-D-Maltopyranoside (DDM). This composition of DFN-02 allows sumatriptan to be rapidly absorbed into the systemic circulation and exhibit pharmacokinetics comparable to subcutaneously administered sumatriptan. Rapid rate of absorption is suggested to be important for optimal efficacy. The objective of this study was to evaluate the safety and tolerability of DFN-02 (10 mg) in the acute treatment of episodic migraine with and without aura over a 6-month period based on the incidence of treatment-emergent adverse events and the evaluation of results of clinical laboratory tests, vital signs, physical examination, and electrocardiograms.MethodsThis was a multi-center, open-label, repeat-dose safety study in adults with episodic migraine with and without aura. Subjects diagnosed with migraine with or without aura according to the criteria set forth in the International Classification of Headache Disorders, 2nd edition, who experienced 2 to 6 attacks per month with fewer than 15 headache days per month and at least 48 headache-free hours between attacks, used DFN-02 to treat their migraine attacks acutely over the course of 6 months.ResultsA total of 173 subjects was enrolled, 167 (96.5%) subjects used at least 1 dose of study medication and were evaluable for safety, and 134 (77.5%) subjects completed the 6-month study. A total of 2211 migraine attacks was reported, and 3292 doses of DFN-02 were administered; mean per subject monthly use of DFN-02 was 3.6 doses. Adverse events were those expected for triptans, as well as for nasally administered compounds. No new safety signals emerged. Dysgeusia and application site pain were the most commonly reported treatment-emergent adverse events over 6 months (21% and 30.5%, respectively). Most of the treatment-emergent adverse events were mild. There were 5 serious adverse events, all considered unrelated to the study medication; the early discontinuation rate was 22.5% over the 6-month treatment period.ConclusionDFN-02 was shown to be well tolerated when used over 6 months to treat episodic migraine acutely

    Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Donepezil 23 mg/d, recently approved in the United States for treatment of moderate to severe Alzheimer's disease (AD), was developed to address the need for an additional treatment option for patients with advanced AD. This report, based on a pivotal phase 3 study, presents a detailed analysis of the safety and tolerability of increasing donepezil to 23 mg/d compared with continuing 10 mg/d.</p> <p>Method</p> <p>Safety analyses comprised examination of the incidence, severity, and timing of treatment-emergent adverse events (AEs) and their relationship to treatment initiation; changes in weight, electrocardiogram, vital signs, and laboratory parameters; and the incidence of premature study discontinuation. The analysis population (n = 1434) included all randomized patients who took at least 1 dose of study drug and had a postbaseline safety assessment. To further examine the effect of transition from a lower to a higher donepezil dose, a pooled analysis of safety data from 2 phase 3 trials of donepezil 5 mg/d and 10 mg/d was also performed.</p> <p>Results</p> <p>The safety population comprised 1434 patients: donepezil 23 mg/d (n = 963); donepezil 10 mg/d (n = 471); completion rates were 71.1% and 84.7%, respectively. The most common AEs were nausea, vomiting, and diarrhea (donepezil 23 mg/d: 11.8%, 9.2%, 8.3%; donepezil 10 mg/d: 3.4%, 2.5%, 5.3%, respectively). AEs that contributed most to early discontinuations were vomiting (2.9% of patients in the 23 mg/d group and 0.4% in the 10 mg/d group), nausea (1.9% and 0.4%), diarrhea (1.7% and 0.4%), and dizziness (1.1% and 0.0%). The percentages of patients with AEs in the 23 mg/d group, as well as the timing, type, and severity of these AEs, were similar to those seen in previous donepezil trials with titration from 5 to 10 mg/d. Serious AEs were uncommon (23 mg/d, 8.3%; 10 mg/d, 9.6%).</p> <p>Discussion</p> <p>The 23 mg/d dose of donepezil was associated with typical cholinergic AEs, particularly gastrointestinal-related AEs, similar to those observed in studies with a dose increase from 5 to 10 mg/d.</p> <p>Conclusion</p> <p>The good safety and predictable tolerability profile for donepezil 23 mg/d supports its favorable risk/benefit ratio in patients with moderate to severe AD.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00478205">NCT00478205</a></p

    Non-Invasive In Vivo Imaging of Calcium Signaling in Mice

    Get PDF
    Rapid and transient elevations of Ca2+ within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca2+ concentration ([Ca2+]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca2+-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca2+] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca2+] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca2+] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca2+ signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies

    Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance

    Get PDF
    Background: Oxidative phosphorylation (OXPHOS) is the primary source of ATP in eukaryotes and serves as a mechanistic link between variation in genotypes and energetic phenotypes. While several physiological and anatomical factors may lead to increased aerobic capacity, variation in OXPHOS proteins may influence OXPHOS efficiency and facilitate adaptation in organisms with varied energy demands. Although there is evidence that natural selection acts on OXPHOS genes, the focus has been on detection of directional (positive) selection on specific phylogenetic branches where traits that increase energetic demands appear to have evolved. We examined patterns of selection in a broader evolutionary context, i.e., on multiple lineages of fishes with extreme high and low aerobic performance. Results: We found that patterns of natural selection on mitochondrial OXPHOS genes are complex among fishes with different swimming performance. Positive selection is not consistently associated with high performance taxa and appears to be strongest on lineages containing low performance taxa. In contrast, within high performance lineages, purifying (negative) selection appears to predominate. Conclusions: We provide evidence that selection on OXPHOS varies in both form and intensity within and among lineages through evolutionary time. These results provide evidence for fluctuating selection on OXPHOS associated with divergence in aerobic performance. However, in contrast to previous studies, positive selection was strongest on low performance taxa suggesting that adaptation of OXPHOS involves many factors beyond enhancing ATP production in high performance taxa. The broader pattern indicates a complex interplay between organismal adaptations, ATP demand, and OXPHOS function.This work was supported by NSF award DEB-0732988 (to REB).Ye
    corecore