6,809 research outputs found

    Unconventional Uses of Microcantilevers as Chemical Sensors in Gas and Liquid Media

    Get PDF
    The use of microcantilevers as (bio)chemical sensors usually involves the application of a chemically sensitive layer. The coated device operates either in a static bending regime or in a dynamic flexural mode. While some of these coated devices may be operated successfully in both the static and the dynamic modes, others may suffer from certain shortcomings depending on the type of coating, the medium of operation and the sensing application. Such shortcomings include lack of selectivity and reversibility of the sensitive coating and a reduced quality factor due to the surrounding medium. In particular, the performance of microcantilevers excited in their standard out-of-plane dynamic mode drastically decreases in viscous liquid media. Moreover, the responses of coated cantilevers operating in the static bending mode are often difficult to interpret. To resolve these performance issues, the following emerging unconventional uses of microcantilevers are reviewed in this paper: (1) dynamic-mode operation without using a sensitive coating, (2) the use of in-plane vibration modes (both flexural and longitudinal) in liquid media, and (3) incorporation of viscoelastic effects in the coatings in the static mode of operation. The advantages and drawbacks of these atypical uses of microcantilevers for chemical sensing in gas and liquid environments are discussed

    Effect of Hydrodynamic Force on Microcantilever Vibrations: Applications to Liquid-Phase Chemical Sensing

    Get PDF
    At the microscale, cantilever vibrations depend not only on the microstructure’s properties and geometry but also on the properties of the surrounding medium. In fact, when a microcantilever vibrates in a fluid, the fluid offers resistance to the motion of the beam. The study of the influence of the hydrodynamic force on the microcantilever’s vibrational spectrum can be used to either (1) optimize the use of microcantilevers for chemical detection in liquid media or (2) extract the mechanical properties of the fluid. The classical method for application (1) in gas is to operate the microcantilever in the dynamic transverse bending mode for chemical detection. However, the performance of microcantilevers excited in this standard out-of-plane dynamic mode drastically decreases in viscous liquid media. When immersed in liquids, in order to limit the decrease of both the resonant frequency and the quality factor, and improve sensitivity in sensing applications, alternative vibration modes that primarily shear the fluid (rather than involving motion normal to the fluid/beam interface) have been studied and tested: these include in-plane vibration modes (lateral bending mode and elongation mode). For application (2), the classical method to measure the rheological properties of fluids is to use a rheometer. However, such systems require sampling (no in-situ measurements) and a relatively large sample volume (a few milliliters). Moreover, the frequency range is limited to low frequencies (less than 200Hz). To overcome the limitations of this classical method, an alternative method based on the use of silicon microcantilevers is presented. The method, which is based on the use of analytical equations for the hydrodynamic force, permits the measurement of the complex shear modulus of viscoelastic fluids over a wide frequency range

    A pulsed atomic soliton laser

    Full text link
    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a non-dispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure

    Open Repair Versus Thoracic Endovascular Aortic Repair in Multiple-Injured Patients: Observations From a Level-1 Trauma Center

    Get PDF
    Background: Blunt trauma of the thoracic aorta is a rare but potentially life-threatening entity. Intimal tears are a domain of non-operative management, whereas all other types of lesions should be repaired urgently. There is now a clear trend favoring minimally invasive stent grafting over open surgical repair. Objectives: The aim of the present study was to retrospectively evaluate the mortality and morbidity with either treatment option. Therefore, a retrospective observational study was performed to compare two different treatment methods at two different time periods at one trauma center. Patients and Methods: Between 1977 and 2012, all severely injured patients referred to our level 1 trauma center were screened for blunt aortic injuries. We compared baseline characteristics, 30-day and overall mortality, morbidity, duration of intensive care treatment, procedure time, and transfusion of packed red blood between patients who underwent open surgical or stent repair. Results: During the observation period, 45 blunt aortic injuries were recorded. The average Injury Severity Score (ISS) was 41.8 (range 29 - 68). Twenty-five patients underwent Open Repair (OR), and another 20 patients were scheduled to emergency stent grafting. The 30-day mortality in the surgical and stent groups were 5/25 (20%) and 2/20 (10%), respectively. The average time for open surgery was 151 minutes; the mean time for stent grafting was 67 minutes (P = 0.001). Postoperative stay on the intensive care unit was between one and 59 days (median 10) in group one and between four and 50 days in group two (median 26)(P = 0.03). Patients undergoing OR required transfusion of 6.0 units of packed red cells in median; patients undergoing stent grafting required a median of 2.0 units of packed red cells (P < 0.001). In the stent grafting group, 30-day mortality was 10% (2/20). Conclusions: Due to more sophisticated diagnostic tools and surgical approaches, mortality and morbidity of blunt aortic injuries were significantly reduced over the years compared to thoracic endovascular aortic repair and OR over two different time periods

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    Deep Near-Infrared Observations of L1014: Revealing the nature of the core and its embedded source

    Full text link
    Recently, the Spitzer Space Telescope discovered L1014-IRS, a mid-infrared source with protostellar colors, toward the heretofore "starless" core L1014. We present deep near-infrared observations that show a scattered light nebula extending from L1014-IRS. This nebula resembles those typically associated with protostars and young stellar objects, tracing envelope cavities presumably evacuated by an outflow. The northern lobe of the nebula has an opening angle of ~100 degrees, while the southern lobe is barely detected. Its morphology suggests that the bipolar cavity and inferred protostellar disk is not inclined more than 30 degrees from an edge-on orientation. The nebula extends at least 8" from the source at Ks, strongly suggesting that L1014-IRS is embedded within L1014 at a distance of 200 pc rather than in a more distant cloud associated with the Perseus arm at 2.6 kpc. In this case, the apparently low luminosity of L1014-IRS, 0.090 Lsun, is consistent with it having a substellar mass. However, if L1014-IRS is obscured by a circumstellar disk, its luminosity and inferred mass may be greater. Using near-infrared colors of background stars, we investigate characteristics of the L1014 molecular cloud core. We determine a mass of 3.6 Msun for regions of the core with Av > 2 magnitudes. A comparison of the radial extinction profile of L1014 with other cores suggests that L1014 may be among the most centrally condensed cores known, perhaps indicative of the earliest stages of brown dwarf or star formation processes.Comment: Replacement includes revision to mass of core. 22 pages, 6 figures. Accepted by Ap

    Convective Nonlinearity in Non-Newtonian Fluids

    Full text link
    In the limit of infinite yield time for stresses, the hydrodynamic equations for viscoelastic, Non-Newtonian liquids such as polymer melts must reduce to that for solids. This piece of information suffices to uniquely determine the nonlinear convective derivative, an ongoing point of contention in the rheology literature.Comment: 4 page

    An expert consensus on the recommendations for the use of biomarkers in Fabry disease

    Get PDF
    Fabry disease is an X-linked lysosomal storage disorder caused by the accumulation of glycosphingolipids in various tissues and body fluids, leading to progressive organ damage and life-threatening complications. Phenotypic classification is based on disease progression and severity and can be used to predict outcomes. Patients with a classic Fabry phenotype have little to no residual α-Gal A activity and have widespread organ involvement, whereas patients with a later-onset phenotype have residual α-Gal A activity and disease progression can be limited to a single organ, often the heart. Diagnosis and monitoring of patients with Fabry disease should therefore be individualized, and biomarkers are available to support with this. Disease-specific biomarkers are useful in the diagnosis of Fabry disease; non-disease-specific biomarkers may be useful to assess organ damage. For most biomarkers it can be challenging to prove they translate to differences in the risk of clinical events associated with Fabry disease. Therefore, careful monitoring of treatment outcomes and collection of prospective data in patients are needed. As we deepen our understanding of Fabry disease, it is important to regularly re-evaluate and appraise published evidence relating to biomarkers. In this article, we present the results of a literature review of evidence published between February 2017 and July 2020 on the impact of disease-specific treatment on biomarkers and provide an expert consensus on clinical recommendations for the use of those biomarkers
    • 

    corecore