45 research outputs found

    A Review on Miscanthus Biomass Production and Composition for Bioenergy Use: Genotypic and Environmental Variability and Implications for Breeding

    Get PDF
    International audienceThe lignocellulosic C4 perennial crop miscanthus and, more particularly, one of its species, Miscanthus x giganteus, are especially interesting for bioenergy production because they combine high biomass production with a low environmental impact. However, few varieties are available, which is risky due to disease susceptibility. Gathering worldwide references, this review shows a high genotypic and environmental variability for traits of interest related to miscanthus biomass production and composition, which may be useful in breeding programs for enhancing the availability of suitable clones for bioenergy production. The M. x giganteus species and certain clones in the Miscanthus sinensis species seem particularly interesting due to high biomass production per hectare. Although the industrial requirements for biomass composition have not been fully defined for the different bioenergy conversion processes, the M. x giganteus and Miscanthus sacchariflorus species, which show high lignin contents, appear more suitable for thermochemical conversion processes. In contrast, the M. sinensis species and certain M. x giganteus clones with low lignin contents were interesting for biochemical conversion processes. The M. sacchariflorus species is also interesting as a progenitor for breeding programs, due to its low ash content, which is suitable for the different bioenergy conversion processes. Moreover, mature miscanthus crops harvested in winter seem preferred by industry to enhance efficiency and reduce the expense of the processes. This investigation on miscanthus can be extrapolated to other monocotyledons and perennial crops, which may be proposed as feedstocks in addition to miscanthus

    Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar

    Get PDF
    UK: The UK‐led miscanthus research and breeding was mainly supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Department for Environment, Food and Rural Affairs (Defra), the BBSRC CSP strategic funding grant BB/CSP1730/1, Innovate UK/BBSRC “MUST” BB/N016149/1, CERES Inc. and Terravesta Ltd. through the GIANT‐LINK project (LK0863). Genomic selection and genomewide association study activities were supported by BBSRC grant BB/K01711X/1, the BBSRC strategic programme grant on Energy Grasses & Bio‐refining BBS/E/W/10963A01. The UK‐led willow R&D work reported here was supported by BBSRC (BBS/E/C/00005199, BBS/E/C/00005201, BB/G016216/1, BB/E006833/1, BB/G00580X/1 and BBS/E/C/000I0410), Defra (NF0424) and the Department of Trade and Industry (DTI) (B/W6/00599/00/00). IT: The Brain Gain Program (Rientro dei cervelli) of the Italian Ministry of Education, University, and Research supports Antoine Harfouche. US: Contributions by Gerald Tuskan to this manuscript were supported by the Center for Bioenergy Innovation, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, under contract number DE‐AC05‐00OR22725. Willow breeding efforts at Cornell University have been supported by grants from the US Department of Agriculture National Institute of Food and Agriculture. Contributions by the University of Illinois were supported primarily by the DOE Office of Science; Office of Biological and Environmental Research (BER); grant nos. DE‐SC0006634, DE‐SC0012379 and DE‐SC0018420 (Center for Advanced Bioenergy and Bioproducts Innovation); and the Energy Biosciences Institute. EU: We would like to further acknowledge contributions from the EU projects “OPTIMISC” FP7‐289159 on miscanthus and “WATBIO” FP7‐311929 on poplar and miscanthus as well as “GRACE” H2020‐EU.3.2.6. Bio‐based Industries Joint Technology Initiative (BBI‐JTI) Project ID 745012 on miscanthus.Peer reviewedPostprintPublisher PD

    Crop diagnosis and probe genotypes for interpreting genotype environment interaction in winter wheat trials

    No full text
    International audienc

    SELECTION VARIETALE ET MILIEU SĂ©lection pour l’adaptation au milieu et prise en compte des interactions gĂ©notype/milieu

    No full text
    L’adaptation au milieu est un objectif de sĂ©lection recherchĂ© pour un grand nombre d’espĂšces vĂ©gĂ©tales et elle fait le plus souvent appel Ă  l’analyse du rendement. L’amĂ©liorateur peut rechercher des gĂ©notypes prĂ©sentant une « adaptation spĂ©cifique », c’est-Ă -dire une adaptation Ă  des milieux spĂ©cifiques, ou au contraire une « adaptation gĂ©nĂ©rale » Ă  des conditions de milieux variĂ©s *1+. L’adaptation spĂ©cifique pourra ĂȘtre obtenue pour des stress particuliers, observĂ©s en l’occurrence dans des milieux particuliers : citons, par exemple, l’adaptation du maĂŻs Ă  des froids printaniers dans les rĂ©gions françaises septentrionales, l’adaptation du blĂ© tendre d’hiver Ă  une alimentation azotĂ©e sub-optimale, la tolĂ©rance de l’orge Ă  la mosaĂŻque modĂ©rĂ©e, etc. L’adaptation gĂ©nĂ©rale, parfois appelĂ©e adaptabilitĂ©, est confĂ©rĂ©e par une adaptation simultanĂ©e Ă  un ensemble de contraintes du milieu, telles que le froid, la sĂ©cheresse, le manque d’eau, le manque ou l’excĂšs d’azote, les maladies, etc. C’est en quelque sorte une somme d’adaptations spĂ©cifiques. Mais le nombre de contraintes du milieu est tel qu’il est difficile de les Ă©tudier toutes. Il faudrait, en effet, des dispositifs factoriels trĂšs lourds Ă  mettre en place car nĂ©cessitant l’étude d’un grand nombre de facteurs Ă  la fois, avec toutes les combinaisons entre facteurs. Les conditions naturelles sont, de surcroĂźt, difficiles Ă  reproduire en enceintes contrĂŽlĂ©es. Ainsi, l’adaptation gĂ©nĂ©rale s’observe le plus souvent en conditions naturelles dans des rĂ©seaux d’expĂ©rimentation regroupant un ensemble de milieux sur plusieurs annĂ©es, les « rĂ©seaux multilocaux et pluriannuels ». La notion d’adaptation est Ă  replacer dans le contexte des interactions gĂ©notype/milieu car des variations d’adaptation se traduisent par des interactions gĂ©notype/milieu. Lorsque plusieurs gĂ©notypes sont Ă©tudiĂ©s dans plusieurs milieux, le caractĂšre considĂ©rĂ©, par exemple le rendement, prĂ©sente deux sources de variation : celle due aux gĂ©notypes, appelĂ©e « effet du gĂ©notype », et celle due aux milieux, appelĂ©e « effet du milieu ». Pour des caractĂšres agronomiques complexes tels que le rendement, la teneur en protĂ©ines, etc., ces deux sources sont rarement additives. En effet, le cas le plus gĂ©nĂ©ral est celui oĂč il existe un Ă©cart, une dĂ©viation entre la valeur observĂ©e et celle prĂ©vue par l’additivitĂ© des effets du milieu et des effets du gĂ©notype, ce qu’on appelle communĂ©ment Ă©cart au modĂšle additif. Graphiquement, l’additivitĂ© se traduit par un parallĂ©lisme des rĂ©actions entre gĂ©notypes d’un milieu Ă  un autre (figure 1A) tandis que l’interaction se manifeste par un non-parallĂ©lisme de ces rĂ©actions. On parle d’interaction quantitative (figure 1B) lorsque les classements des gĂ©notypes sont conservĂ©s entre les lieux et d’interaction qualitative (figure 1C) dans le cas d’une inversion de classement *2+. C’est une notion relative qui dĂ©pend Ă  la fois des gĂ©notypes et des milieux considĂ©rĂ©s. Étudier l’adaptation d’un gĂ©notype revient donc Ă  analyser l’interaction gĂ©notype/milieu

    Biomass for the Future: Miscanthus and Sorghum for New End-Uses in France

    No full text
    International audienc

    Comment adapter la biomasse aux utilisations énergétiques ?

    No full text
    National audienc

    Early prediction of <em>Miscanthus</em> biomass production and composition based on the first six years of cultivation

    No full text
    International audienceMiscanthus is a promising feedstock for second-generation bioethanol production. This perennial crop produces its biomass in two phases: a yield-building phase, where the biomass production increases gradually, and a plateau phase, where it is maintained. However, to target the breeding of Miscanthus for second-generation bioethanol production, the early selection of interesting traits is critical. We therefore investigated the interannual correlations within and among the traits related to biomass production and composition. We studied 21 clones belonging to M. x giganteus J. M. Greef & Deuter ex Hodk. & Renvoize, M. sacchariflorus (Maxim.) Benth. & Hook. f. ex Franch., and M. sinensis Andersson species cultivated on plots from the second to the sixth year at two harvest dates. The biomass production, canopy height, plant stem number, and above-ground plant volume index were better predicted from the third year than from the second year (minimum correlation coefficients of 0.76 and 0.67 respectively). The stem diameter was well predicted from the second year (correlations above 0.93). The canopy height and the above-ground plant volume index determined in the second and third year were the best predictors of the biomass produced in the second, third, and fourth year (minimum correlations of 0.77 against 0.52 for flowering date or 0.64 for stem diameter). For older crops, the canopy height measured in the second and third year was the best predictor of the biomass production (correlations above 0.70). The interannual correlations were lower for the biomass composition-related traits than for the production-related traits and fluctuated over time. These results showed that early prediction of interesting traits is feasible to breed varieties tailored for biofuel production
    corecore