98 research outputs found

    Relevance of Ge incorporation to control the physical behaviour of point defects in kesterite

    Full text link
    To reduce the prominent VOC-deficit that limits kesterite-based solar cells efficiencies, Ge has been proposed over the recent years with encouraging results as the reduction of the non-radiative recombination rate is considered as a way to improve the well-known Sn-kesterite world record efficiency. To gain further insight into this mechanism, we investigate the physical behaviour of intrinsic point defects both upon Ge doping and alloying of Cu2ZnSnS4 kesterite. Using a first-principles approach, we confirm the p-type conductivity of both Cu2ZnSnS4 and Cu2ZnGeS4, attributed to the low formation energies of the VCu and CuZn acceptor defects within the whole stable phase diagram range. Via doping of the Sn-kesterite matrix, we report the lowest formation energy for the substitutional defect GeSn. We also confirm the detrimental role of the substitutional defects XZn (X=Sn,Ge) acting as recombination centres within the Sn-based, the Ge-doped and the Ge-based kesterite. Upon Ge incorporation, we highlight, along with the increase of the XZn (X=Sn,Ge) neutral defect formation energy, the reduction of the lattice distortion resulting in the reduction of the carrier capture cross section. Both of these elements leading to a decrease of the non-radiative recombination rate within the bulk material following the Sn substitution by Ge

    Study of the opto-electronic properties of Cu2ZnXS4 (X=Sn,Ge,Si) kesterites as input data for solar cell efficiency modelling

    Full text link
    In this work, first principle calculations of Cu2 ZnSnS4 (CZTS), Cu2 ZnGeS4 (CZGS) and Cu2 ZnSiS4 (CZSS) are performed to highlight the impact of the cationic substitution on the structural, electronic and optical properties of kesterite compounds. Direct bandgaps are reported with values of 1.32, 1.89 and 3.06 eV respectively for CZTS, CZGS and CZSS. In addition, absorption coefficient values of the order of 10^4 cm^{−1} are obtained, indicating the applicability of these materials as absorber layer for solar cell applications. In the second part of this study, ab initio results (absorption coefficient, refractive index and reflectivity) are used as input data to model the electrical power conversion efficiency of kesterite-based solar cell. In that perspective, we used an improved version of the Shockley-Queisser theoretical model including non-radiative recombination via an external parameter defined as the in- ternal quantum efficiency. Based on predicted optimal absorber layer thicknesses, the variation of the solar cell maximal efficiency is studied as a function of the non-radiative recombination rate. Maximal efficiencies of 25.88 %, 19.94 % and 3.11 % are reported respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 for vanishing non-radiative recombination rate. Using a realistic internal quantum efficiency which provides OC values comparable to experimental measurements, solar cell efficiencies of 15.88, 14.98 and 2.66 % are reported respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 (for an optimal thickness of 1.15 m). With this methodology we confirm the suitability of Cu2ZnSnS4 in single junction solar cells, with a possible efficiency improvement of 10% enabled through the reduction of the non-radiative recombination rate. In addition, Cu2ZnGeS4 appears to be an interesting candidate as top cell absorber layer for tandem approaches whereas Cu2ZnSiS4 might be interesting for transparent photovoltaic windows

    Heterogeneous Integration and Fabrication of III-V MOS Devices in a 200mm Processing Environment

    Full text link
    We report on the fabrication of MOS capacitors on 200 mm virtual GaAs substrates using a Si CMOS processing environment. The fabricated capacitors were comparable to those processed on bulk GaAs material. Topside contact was made to the GaAs using a novel CMOS compatible self-aligned NiGe contact scheme resulting in a measured contact resistance of 0.26 [ohm sign].cm. Cross-contamination from various III-V substrates was investigated and it was found that by limiting the thermal budget to <= 300C cross-contamination from the outgassing of In, Ga and As could be eliminated. For wet processing the judicious choice of recipe and processing conditions resulted in no significant cross-contamination being detected as determined by TXRF monitoring. This achievement enables III-V device production using state-of-the-art Si processing equipment.Peer reviewe

    On the importance of joint mitigation strategies for front, bulk, and rear recombination in ultrathin Cu(In,Ga)Se2 solar cells

    Get PDF
    Several optoelectronic issues, such as poor optical absorption and recombination limit the power conversion efficiency of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. To mitigate recombination losses, two combined strategies were implemented: a Potassium Fluoride (KF) Post-Deposition Treatment (PDT) and a rear interface passivation strategy based on an Aluminium Oxide (Al2O3) point contact structure. The simultaneous implementation of both strategies is reported for the first time on ultrathin CIGS devices. Electrical measurements and 1-D simulations demonstrate that, in specific conditions, devices with only KF-PDT may outperform rear interface passivated based devices. By combining KF-PDT and rear interface passivation, an enhancement in open-circuit voltage of 178 mV is reached over devices that have a rear passivation only and of 85 mV over devices with only a KF-PDT process. Time-Resolved Photoluminescence measurements showed the beneficial effects of combining KF-PDT and the rear interface passivation at decreasing recombination losses in the studied devices, enhancing charge carrier lifetime. X-ray photoelectron spectroscopy measurements indicate the presence of a In and Se rich layer that we linked to be a KInSe2 layer. Our results suggest that when bulk and front interface recombination values are very high, they dominate and individual passivation strategies work poorly. Hence, this work shows that for ultrathin devices, passivation mitigation strategies need to be implemented in tandem.publishe

    On the importance of joint mitigation strategies for front, bulk, and rear recombination in ultrathin Cu(In,Ga)Se2 solar cells

    Get PDF
    Several optoelectronic issues, such as poor optical absorption and recombination limit the power conversion efficiency of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. To mitigate recombination losses, two combined strategies were implemented: a Potassium Fluoride (KF) Post-Deposition Treatment (PDT) and a rear interface passivation strategy based on an Aluminium Oxide (Al2O3) point contact structure. The simultaneous implementation of both strategies is reported for the first time on ultrathin CIGS devices. Electrical measurements and 1-D simulations demonstrate that, in specific conditions, devices with only KF-PDT may outperform rear interface passivated based devices. By combining KF-PDT and rear interface passivation, an enhancement in open-circuit voltage of 178 mV is reached over devices that have a rear passivation only and of 85 mV over devices with only a KF-PDT process. Time-Resolved Photoluminescence measurements showed the beneficial effects of combining KF-PDT and the rear interface passivation at decreasing recombination losses in the studied devices, enhancing charge carrier lifetime. X-ray photoelectron spectroscopy measurements indicate the presence of a In and Se rich layer that we linked to be a KInSe2 layer. Our results suggest that when bulk and front interface recombination values are very high, they dominate and individual passivation strategies work poorly. Hence, this work shows that for ultrathin devices, passivation mitigation strategies need to be implemented in tandem.publishe

    Revealing the electronic structure, heterojunction band offset and alignment of Cu2ZnGeSe4: a combined experimental and computational study towards photovoltaic applications

    Get PDF
    Cu2ZnGeSe4 (CZGSe) is a promising earth-abundant and non-toxic semiconductor material for large-scale thin-film solar cell applications. Herein, we have employed a joint computational and experimental approach to characterize and assess the structural, optoelectronic, and heterojunction band offset and alignment properties of CZGSe solar absorber. The CZGSe films were successfully prepared using DC-sputtering and e-beam evaporation systems and confirmed by XRD and Raman spectroscopy analyses. The CZGSe films exhibit a bandgap of 1.35 eV, as estimated from electrochemical cyclic voltammetry (CV) measurements and validated by first-principles density functional theory (DFT) calculations, which predicts a bandgap of 1.38 eV. A fabricated device based on the CZGSe as light absorber and CdS as a buffer layer yields power conversion efficiency (PCE) of 4.4% with VOC of 0.69 V, FF of 37.15, and JSC of 17.12 mA cm−2. Therefore, we suggest that interface and band offset engineering represent promising approaches to improve the performance of CZGSe devices by predicting a type-II staggered band alignment with a small conduction band offset of 0.18 eV at the CZGSe/CdS interface

    Cu(In,Ga)Se2 based ultrathin solar cells: the pathway from lab rigid to large scale flexible technology

    Get PDF
    For the first time, the incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 (CIGS) based solar cells is shown in a flexible lightweight stainless-steel substrate. The fabrication was based on an industry scalable lithography technique - nanoimprint lithography (NIL) - for a 15x15 cm2 dielectric layer patterning, needed to reduce optoelectronic losses at the rear interface. The nanopatterning schemes are usually developed by lithographic techniques or by processes with limited scalability and reproducibility (nanoparticle lift-off, spin-coating, etc). However, in this work the dielectric layer is patterned using NIL, a low cost, large area, high resolution, and high throughput technique. To assess the NIL performance, devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. Up to now, EBL is considered the most reliable technique for patterning laboratory samples. The device patterned by NIL shows similar light to power conversion efficiency average values compared to the EBL patterned device - 12.6 % vs 12.3 %, respectively - highlighting the NIL potential for application in the solar cell sector. Moreover, the impact of the lithographic processes, such as different etch by-products, in the rigid solar cells’ figures of merit were evaluated from an elemental point of view via X-ray Photoelectron Spectroscopy and electrically through a Solar Cell Capacitance Simulator (SCAPS) fitting procedure. After an optimised NIL process, the device on stainless-steel achieved an average power conversion efficiency value of 11.7 % - a slightly lower value than the one obtained for the rigid approach, due to additional challenges raised by processing and handling steel substrates, even though scanning transmission electron microscopy did not show any clear evidence of impurity diffusion towards the absorber. Notwithstanding, time-resolved photoluminescence results strongly suggested the presence of additional non-radiative recombination mechanisms in the stainless-steel absorber, which were not detected in the rigid solar cells, and are compatible with elemental diffusion from the substrate. Nevertheless, bending tests on the stainless-steel device demonstrated the mechanical stability of the CIGS-based device up to 500 bending cycles.This work was funded in part by the Fundação para a Ciência e a Tecnologia (FCT) under Grants 2020.04564.BD, IF/00133/2015, PD/BD/142780/2018, SFRH/BD/146776/2019, UIDB/04564/2020 and UIDP/04564/2020, 2020.07073.BD, as well as through the projects NovaCell (PTDC/CTMCTM/28075/2017), CASOLEM (028917) “Correlated Analysis of Inorganic Solar Cells in and outside an Electron Microscope”, and InovSolarCells (PTDC/FISMAC/29696/2017) co-funded by FCT and the ERDF through COMPETE2020. And by the European Union's Horizon 2020 research and innovation 15 programme under the grants agreements N°. 720887 (ARCIGS-M project) and grand agreement N°.715027 (Uniting PV). The Special Research Fund (BOF) of Hasselt University is also acknowledged. P. Salomé and P. A. Fernandes would like to acknowledge FCT for the support of the project FCT UIDB/04730/2020. This work was developed within the scope of the project i3N, UIDB/50025/2020 & UIDP/50025/2020, financed by national funds through the FCT/MEC. The authors also acknowledge the support of Carlos Calaza in the fabrication for the 200 mm Si point contact stamp.info:eu-repo/semantics/publishedVersio
    corecore