35 research outputs found

    Multi-Linear Algebraic Eigendecompositions and Their Application in Data Science

    Get PDF
    Multi-dimensional data analysis has seen increased interest in recent years. With more and more data arriving as 2-dimensional arrays (images) as opposed to 1-dimensioanl arrays (signals), new methods for dimensionality reduction, data analysis, and machine learning have been pursued. Most notably have been the Canonical Decompositions/Parallel Factors (commonly referred to as CP) and Tucker decompositions (commonly regarded as a high order SVD: HOSVD). In the current research we present an alternate method for computing singular value and eigenvalue decompositions on multi-way data through an algebra of circulants and illustrate their application to two well-known machine learning methods: Multi-Linear Principal Component Analysis (MPCA) and Mulit-Linear Discriminant Analysis (MLDA)

    Mortality in Western Australian seniors with chronic respiratory diseases: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively few studies have examined survival by pharmacotherapy level and the effects of patient characteristics on mortality by pharmacotherapy level in older chronic respiratory disease (CRD) patients. This study aimed to investigate these issues in older (≥ 65) CRD patients in Western Australia.</p> <p>Methods</p> <p>We identified 108,312 patients ≥ 65 years with CRD during 1992-2006 using linked medical, pharmaceutical, hospital and mortality databases held by the Commonwealth and State governments. Pharmacotherapy classification levels were designed by a clinical consensus panel. Cox regression was used to investigate the study aim.</p> <p>Results</p> <p>Patients using only short acting bronchodilators experienced similar, but slightly worse survival than patients in the highest pharmacotherapy level group using high dose inhaled corticosteroids (ICS) ± long acting bronchodilators (LABs) ± oral steroids. Patients using low to medium dose ICS ± LABs experienced relatively better survival. Also, male gender was associated with all-cause mortality in all patients (HR = 1.72, 95% CI 1.65-1.80) and especially in those in the highest pharmacotherapy level group (HR = 1.97, 95%CI = 1.84-2.10). The P-value of interaction between gender and pharmacotherapy level for the effect on all-cause death was significant (0.0003).</p> <p>Conclusions</p> <p>Older patients with CRD not using ICS experienced the worst survival in this study and may benefit from an escalation in therapeutic regime. Males had a higher risk of death than females, which was more pronounced in the highest pharmacotherapy level group. Hence, primary health care should more actively direct disease management to mild-to-moderate disease patients.</p

    The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.</p> <p>Methods</p> <p>In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.</p> <p>Results</p> <p>In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.</p> <p>Conclusions</p> <p>Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.</p

    Expansion of CD4+CD25+ and CD25- T-Bet, GATA-3, Foxp3 and RORγt Cells in Allergic Inflammation, Local Lung Distribution and Chemokine Gene Expression

    Get PDF
    Allergic asthma is associated with airway eosinophilia, which is regulated by different T-effector cells. T cells express transcription factors T-bet, GATA-3, RORγt and Foxp3, representing Th1, Th2, Th17 and Treg cells respectively. No study has directly determined the relative presence of each of these T cell subsets concomitantly in a model of allergic airway inflammation. In this study we determined the degree of expansion of these T cell subsets, in the lungs of allergen challenged mice. Cell proliferation was determined by incorporation of 5-bromo-2′-deoxyuridine (BrdU) together with 7-aminoactnomycin (7-AAD). The immunohistochemical localisation of T cells in the lung microenvironments was also quantified. Local expression of cytokines, chemokines and receptor genes was measured using real-time RT-PCR array analysis in tissue sections isolated by laser microdissection and pressure catapulting technology. Allergen exposure increased the numbers of T-bet+, GATA-3+, RORγt+ and Foxp3+ cells in CD4+CD25+ and CD4+CD25- T cells, with the greatest expansion of GATA-3+ cells. The majority of CD4+CD25+ T-bet+, GATA-3+, RORγt+ and Foxp3+ cells had incorporated BrdU and underwent proliferation during allergen exposure. Allergen exposure led to the accumulation of T-bet+, GATA-3+ and Foxp3+ cells in peribronchial and alveolar tissue, GATA-3+ and Foxp3+ cells in perivascular tissue, and RORγt+ cells in alveolar tissue. A total of 28 cytokines, chemokines and receptor genes were altered more than 3 fold upon allergen exposure, with expression of half of the genes claimed in all three microenvironments. Our study shows that allergen exposure affects all T effector cells in lung, with a dominant of Th2 cells, but with different local cell distribution, probably due to a distinguished local inflammatory milieu

    The Transcriptome of Trichuris suis – First Molecular Insights into a Parasite with Curative Properties for Key Immune Diseases of Humans

    Get PDF
    Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine) is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD) and ulcerative colitis, in humans. Although it is understood that short-term T. suis infection in people with such diseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response.As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ∼65,000,000 reads were generated and assembled into ∼20,000 contiguous sequences ( = contigs); ∼17,000 peptides were predicted and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping.These analyses provided interesting insights into a number of molecular groups, particularly predicted excreted/secreted molecules (n = 1,288), likely to be involved in the parasite-host interactions, and also various molecules (n = 120) linked to chemokine, T-cell receptor and TGF-β signalling as well as leukocyte transendothelial migration and natural killer cell-mediated cytotoxicity, which are likely to be immuno-regulatory or -modulatory in the infected host. This information provides a conceptual framework within which to test the immunobiological basis for the curative effect of T. suis infection in humans against some immune diseases. Importantly, the T. suis transcriptome characterised herein provides a curated resource for detailed studies of the immuno-molecular biology of this parasite, and will underpin future genomic and proteomic explorations

    Perceptions of Senegalese Telecommunications Policy Experts on Factors Affecting Policy Reform Cheikh Dramé Independent Researcher Author Note

    No full text
    Abstract This paper seeks to inform decision-makers on factors perceived by Senegalese telecommunications experts as hindering the policy reform. Semi-structured interviews were conducted with eight Senegalese telecommunications experts. They perceive that factors affecting the policy reform in the sector are issues associated with three of the six Worldwide Governance Indicators (WGI) produced by Kaufmann, Kraay, &amp; Mastruzzi (2012). These three categories represent voice and accountability, government effectiveness, and regulatory quality. Successful policy reform in the Senegalese telecommunications sector will depend on the ability of Senegalese institutions in charge of telecommunications to address issues described within these three categories

    Habitat manipulation to mitigate the impacts of invasive arthropod pests

    Get PDF
    Exotic invaders are some of the most serious insect pests of agricultural crops around the globe. Increasingly, the structure of landscape and habitat is recognized as having a major influence on both insect pests and their natural enemies. Habitat manipulation that aims at conserving natural enemies can potentially contribute to safer and more effective control of invasive pests. In this paper, we review habitat management experiments, published during the last 10 years, which have aimed to improve biological control of invasive pests. We then discuss during what conditions habitat management to conserve natural enemies is likely to be effective and how the likelihood of success of such methods can be improved. We finally suggest an ecologically driven research agenda for habitat management programmes.We acknowledge the following funding sources: the Tertiary Education Commission, New Zealand, through the Bio-Protection Research Centre, Lincoln University, New Zealand (Mattias Jonsson and Steve Wratten), the New Zealand Foundation for Research, Science and Technology (FRST); project LINX0303 (Steve Wratten, Ross Cullen, Jean Tompkins), Lincoln University, New Zealand, for a Post-graduate Scholarship to Jean Tompkins, USDA CSREES Risk Avoidance and Mitigation Program (2004-51101-02210), USDA NC SARE Project (LCN 04-249), USDA CSREES Arthropod and Nematode Biology (2004-35302-14811), North Central Regional IPM, NSF-LTER at Kellogg Biological Station (NSF DEB 0423627), and the Michigan Agricultural Experiment Station (Doug Landis)
    corecore