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Outline of today’s talk

1 Motivational slide

2 Introduction to tensors and multi-linear subspace learning (MSL)
3 Mathematical foundations of tensors and their application to MSL

1 Tensor-based Eigenvalue Decomposition

4 Analysis of MSL applied to image sequences

5 Multi-class classification via Multi-Linear Discriminant Analysis

6 Conclusions and open research directions
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Data Analysis: Dimensionality Reduction, Clustering, and
Classification (What are we trying to do?)
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What do we mean by Tensor: n-mode or n-way array

A ∈ Rn1×n2×···×nj ← j-th order tensor

A ∈ R5×7×3

Relation to Linear Algebra:

I Vectors are 1−mode tensors

I Matrices are 2−mode tensors
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What do we mean by Tensor: n-mode or n-way array

A ∈ Rn1×n2×···×nj ← j-th order tensor

A ∈ R5×7×3

Today’s Talk:

I Tensor products

I High order eigenvalue
decomposition

I Tensor-based Discriminant
Analysis (MLDA)

I Multi-class classification
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Where do tensors arise?

Many application areas:

I Machine Learning/Data
Analysis

I Computer Vision
I Pattern Recognition
I Anomoly Detection
I Multi-Modal Data

Fusion

I Robotics
I Sensor Fusion
I Volumetric Range Data
I 3-D Mapping

I Medical/Health
I Computed tomography
I Magnetic resonance

I Geospatial
I Multi-spectral satellite

imagery

I Control Theory
I Swarm Dynamics

I etc......
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Mathematical foundations: MatVec and fold

For A ∈ R`×m×n,

MatVec−−−−→


A1

A2

A3
...
An

 ∈ R`n×m


A1

A2

A3
...
An


fold−−→ ∈ R`×m×n
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Mathematical foundations: Block Circulant Matrices

For A ∈ R`×m×n, define

circ (A) ≡


A1 An An−1 · · · A2

A2 A1 An · · · A3

A3 A2 A1 · · · A4
...

...
...

. . .
...

An An−1 An−2 · · · A1



circ(A) ∈ R`n×mn
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Mathematical foundations: Tensor Multiplication or
t-product (Kilmer, Martin and Perrone)

Def: Tensor Product

Let A be `× p × n and B be p ×m × n. Then the t-product A ∗ B is the
`×m × n tensor

A ∗ B = fold (circ(A) · MatVec(B)) .

example

Suppose A ∈ R`×p×3 and B ∈ Rp×m×3. Then

A ∗ B = fold

 A1 A3 A2

A2 A1 A3

A3 A2 A1

 B1B2
B3

 ∈ R`×m×3.
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Tensor-based Eigenvalue Decomposition (t-eig) - (Braman)

Def: Tensor Eigenvalue Decomposition

Given A ∈ Rn×n×n, there exists n × n × n tensor P and an n × n × n
f-diagonal tensor D such that

A = P ∗ D ∗ P−1 =⇒ A ∗ P = D ∗ P =⇒ A ∗ Pj = Pjdj
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Why is this useful?

Multi-class classification via Multi-Linear Discriminant Analysis (MLDA)

I Construct a multi-class data tensor:

X = [X1,X2, · · · ,XC ] ∈ Rn×q×n

I Xi is a tensor corresponding to class i
I each lateral slice of X is an n × n “sample” (image)
I q is the total number of samples
I C is the number of distinct classes

I Goal:
Maximize between-class separation/minimize within-class separation!
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Construct the within-class scatter tensor

I Account for the total “scatter/spread” within each class:

SW =
C∑
i=1

∑
Xj∈ci

(Xj −Mi ) ∗ (Xj −Mi )
T

where
I Xj ∈ Rn×n is the j th lateral slice of X
I Mi ∈ Rn×1×n = 1

Ni

∑
Xj∈ci Xj is the mean tensor of class i

I Ni is the total number of data samples in each class, i.e.,
i = 1, 2, . . . ,C
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Construct the between-class scatter tensor

I Account for the total “scatter/spread” across all classes:

SB =
C∑
i=1

Ni (Mi −M) ∗ (Mi −M)T

where
I M is the mean of all data samples
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Optimal subspace computation

I The projection tensor U is computed by maximizing the ratio of
“determinants” between SW and SB in the projection space:

argmax
U

|UT ∗ SB ∗ U|
|UT ∗ SW ∗ U|

I Reformulating as a multi-linear Lagrangian, U can be computed by
solving the generalized tensor eigenvalue problem

SB ∗ Up = λp ∗ SW ∗ Up

where
I U = [U1,U2, . . . ,Up] ∈ Rn×p×n are the eigenmatrices corresponding to

the p largest eigentuples λp ∈ R1×1×n
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Optimal subspace computation

I Advantages:
1 Don’t need to worry about the “small sample size” problem

encountered in matrix LDA =⇒ SW is invertable!(
S−1W ∗ SB

)
∗ Up = λp ∗ Up

2 Accounts for the “temporal” AND spatial correlation in the image

I Up can be computed using t-eig defined previously!
I There are at most C − 1 nonzero eigentuples

=⇒ the subspace has at most dimension C − 1
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How well does it work?

I Three different data sets for
experimental analysis:

I MNIST: Handwritten Digits
I Ray-Traced

I 128 images captured as
object rotates

I Faces: Yale-B Extended
(variation in illumination)
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How well does it work?

MNIST Ray-Traced Yale B

n 28 50 40

q 60,000 2560 1520

Ni 1000 128 40

C 10 20 38

Recall:

I n is the sample (image) size n × n

I q is the total number of samples

I Ni is the number of samples in
class i

I C is the number of total classes
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How well does it work?

I Classification accuracy:
I Subspace dimension is p = C − 1
I Project new query image into the subspace and perform:

I NN: Nearest neighbor search
I NC: Nearest center search

MNIST Ray-Traced extended Yale B

# of Test Samples 10,000 1280 722

LDA (NN): 85.1% 99.6% 56.8% (w/PCA: 97.8%)

LDA (NC): 84.7% 97.9% 55.2% (w/PCA: 96.2%)

MLDA (NN): 93.2% 100% 95.7%
MLDA (NC): 91.4% 99.2% 94.8%
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Summary

I New approach to multi-class classification
I Tensor Eigenvalue Decomposition
I Multi-linear LDA (MLDA):

I Multi-class classification

I Experimental results:
I Hand written digits (MNIST)
I Objects (ray-traced)
I Faces (Yale-B)

I Outperforms traditional Matrix LDA
I Overcomes “small sample size” issues
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Future Directions

I Compare current MLDA with other “tensor-based” approaches
I CONDECOMP/PARAFAC
I Tucker decompositions (HOSVD)

I Investigate multi-linear extension to other linear and non-linear
subspace learning models:

I CCA, ICA, LLE, ISOMAP, Compressed Sensing, etc.

I Hybrid machine learning methods:
I Multi-linear subspace projections as a pre-cursor to decision trees, deep

neural nets, long-short term memory networks, etc.
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Thank you for your time!

Questions?
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