Multi-Linear Algebraic Eigendecompositions and Their Application in Data Science

Randy C. Hoover[†], Kyle Caudle^{*} and Karen S. Braman^{*}

[†]Department of Electrical and Computer Engineering ^{*}Department of Mathematics and Computer Science South Dakota School of Mines and Technology Rapid City, SD 57701, USA

February 5, 2019

South Dakota State University Data Symposium - 2019

イロト イポト イヨト イ

- Motivational slide
- Introduction to tensors and multi-linear subspace learning (MSL)
- Mathematical foundations of tensors and their application to MSL
 Tensor-based Eigenvalue Decomposition
- Analysis of MSL applied to image sequences
- Multi-class classification via Multi-Linear Discriminant Analysis
- Onclusions and open research directions

▲□▶ ▲圖▶ ▲圖▶ ▲

Data Analysis: Dimensionality Reduction, Clustering, and Classification (What are we trying to do?)

<ロト <回ト < 回ト

$$\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_j} \leftarrow j$$
-th order tensor

Relation to Linear Algebra:

- Vectors are 1-mode tensors
- Matrices are 2-mode tensors

イロト イヨト イヨト イヨト

What do we mean by Tensor: *n*-mode or *n*-way array

$$\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_j} \leftarrow j$$
-th order tensor

Today's Talk:

- Tensor products
- High order eigenvalue decomposition
- Tensor-based Discriminant Analysis (MLDA)

イロト イヨト イヨト イヨト

Multi-class classification

Many application areas:

- Machine Learning/Data Analysis
 - Computer Vision
 - Pattern Recognition
 - Anomoly Detection
 - Multi-Modal Data Fusion
- Robotics
 - Sensor Fusion
 - Volumetric Range Data
 - 3-D Mapping

- Medical/Health
 - Computed tomography
 - Magnetic resonance
- Geospatial
 - Multi-spectral satellite imagery
- Control Theory
 - Swarm Dynamics

◆ロト ◆聞ト ◆臣ト ◆臣ト

etc.....

Mathematical foundations: MatVec and fold

For $\mathcal{A} \in \mathbb{R}^{\ell \times m \times n}$,

<ロト < 団ト < 団ト < 団ト

Mathematical foundations: MatVec and fold

For $\mathcal{A} \in \mathbb{R}^{\ell \times m \times n}$,

Mathematical foundations: Block Circulant Matrices

For $\mathcal{A} \in \mathbb{R}^{\ell imes m imes n}$, define

$$\operatorname{circ}(\mathcal{A}) \equiv \begin{bmatrix} \mathcal{A}_1 & \mathcal{A}_n & \mathcal{A}_{n-1} & \cdots & \mathcal{A}_2 \\ \mathcal{A}_2 & \mathcal{A}_1 & \mathcal{A}_n & \cdots & \mathcal{A}_3 \\ \mathcal{A}_3 & \mathcal{A}_2 & \mathcal{A}_1 & \cdots & \mathcal{A}_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathcal{A}_n & \mathcal{A}_{n-1} & \mathcal{A}_{n-2} & \cdots & \mathcal{A}_1 \end{bmatrix}$$

 $ext{circ}(\mathcal{A}) \in \mathbb{R}^{\ell n imes mn}$

・ロト ・聞ト ・ モト・

Mathematical foundations: Tensor Multiplication or t-product (Kilmer, Martin and Perrone)

Def: Tensor Product

Let \mathcal{A} be $\ell \times p \times n$ and \mathcal{B} be $p \times m \times n$. Then the t-product $\mathcal{A} * \mathcal{B}$ is the $\ell \times m \times n$ tensor

$$\mathcal{A} * \mathcal{B} = \texttt{fold}\left(\texttt{circ}(\mathcal{A}) \cdot \texttt{MatVec}(\mathcal{B})
ight).$$

example

Suppose $\mathcal{A} \in \mathbb{R}^{\ell \times p \times 3}$ and $\mathcal{B} \in \mathbb{R}^{p \times m \times 3}$. Then

$$\mathcal{A} * \mathcal{B} = \texttt{fold} \left(\left[egin{array}{ccc} \mathcal{A}_1 & \mathcal{A}_3 & \mathcal{A}_2 \\ \mathcal{A}_2 & \mathcal{A}_1 & \mathcal{A}_3 \\ \mathcal{A}_3 & \mathcal{A}_2 & \mathcal{A}_1 \end{array}
ight] \left[egin{array}{ccc} \mathcal{B}_1 \\ \mathcal{B}_2 \\ \mathcal{B}_3 \end{array}
ight]
ight) \in \mathbb{R}^{\ell imes m imes 3}.$$

<ロ> <同> <同> <同> < 同>

Def: Tensor Eigenvalue Decomposition

Given $\mathcal{A} \in \mathbb{R}^{n \times n \times n}$, there exists $n \times n \times n$ tensor \mathcal{P} and an $n \times n \times n$ f-diagonal tensor \mathcal{D} such that

$$\mathcal{A} = \mathcal{P} * \mathcal{D} * \mathcal{P}^{-1} \implies \mathcal{A} * \mathcal{P} = \mathcal{D} * \mathcal{P} \implies \mathcal{A} * \mathcal{P}_j = \mathcal{P}_j \mathbf{d}_j$$

< □ > < □ > < □ > < □ > < □ > < □ >

Multi-class classification via Multi-Linear Discriminant Analysis (MLDA)

Construct a multi-class data tensor:

$$\mathcal{X} = [\mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_C] \in \mathbb{R}^{n \times q \times n}$$

- \mathcal{X}_i is a tensor corresponding to class *i*
- each lateral slice of \mathcal{X} is an $n \times n$ "sample" (image)
- q is the total number of samples
- C is the number of distinct classes

<ロト < 団ト < 団ト < 団ト

Multi-class classification via Multi-Linear Discriminant Analysis (MLDA)

Construct a multi-class data tensor:

$$\mathcal{X} = [\mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_C] \in \mathbb{R}^{n \times q \times n}$$

- X_i is a tensor corresponding to class i
- each lateral slice of \mathcal{X} is an $n \times n$ "sample" (image)
- q is the total number of samples
- C is the number of distinct classes
- Goal:

Maximize between-class separation/minimize within-class separation!

< ロト < 同ト < ヨト < ヨト

► Account for the total "scatter/spread" within each class:

$$\mathcal{S}_W = \sum_{i=1}^{C} \sum_{\mathcal{X}_j \in c_i} (\mathcal{X}_j - \mathcal{M}_i) * (\mathcal{X}_j - \mathcal{M}_i)^T$$

where

▶
$$\mathcal{X}_j \in \mathbb{R}^{n \times n}$$
 is the *j*th lateral slice of \mathcal{X}
▶ $\mathcal{M}_i \in \mathbb{R}^{n \times 1 \times n} = \frac{1}{N_i} \sum_{\mathcal{X}_j \in c_i} \mathcal{X}_j$ is the mean tensor of class *i*

N_i is the total number of data samples in each class, i.e., i = 1, 2, ..., C

ヘロト 人間 ト 人 ヨト 人 ヨトー

► Account for the total "scatter/spread" across all classes:

$$\mathcal{S}_B = \sum_{i=1}^{C} N_i (\mathcal{M}_i - \mathcal{M}) * (\mathcal{M}_i - \mathcal{M})^T$$

where

• \mathcal{M} is the mean of all data samples

Image: A matching of the second se

► The projection tensor U is computed by maximizing the ratio of "determinants" between S_W and S_B in the projection space:

$$\underset{\mathcal{U}}{\operatorname{argmax}} \frac{|\mathcal{U}^{T} * \mathcal{S}_{B} * \mathcal{U}|}{|\mathcal{U}^{T} * \mathcal{S}_{W} * \mathcal{U}|}$$

 Reformulating as a multi-linear Lagrangian, U can be computed by solving the generalized tensor eigenvalue problem

$$\mathcal{S}_B * \mathcal{U}_p = \lambda_p * \mathcal{S}_W * \mathcal{U}_p$$

where

• $\mathcal{U} = [\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_p] \in \mathbb{R}^{n \times p \times n}$ are the eigenmatrices corresponding to the *p* largest eigentuples $\lambda_p \in \mathbb{R}^{1 \times 1 \times n}$

イロト イポト イヨト イヨト

Advantages:

• Don't need to worry about the "small sample size" problem encountered in matrix LDA $\implies S_W$ is invertable!

$$\left(\mathcal{S}_{W}^{-1}*\mathcal{S}_{B}\right)*\mathcal{U}_{p}=\boldsymbol{\lambda}_{p}*\mathcal{U}_{p}$$

Accounts for the "temporal" AND spatial correlation in the image
 U_n can be computed using t-eig defined previously!

• There are at most C - 1 nonzero eigentuples

 \implies the subspace has at most dimension C-1

◆ロト ◆聞ト ◆臣ト ◆臣ト

How well does it work?

- Three different data sets for experimental analysis:
 - MNIST: Handwritten Digits
 - Ray-Traced
 - 128 images captured as object rotates
 - Faces: Yale-B Extended (variation in illumination)

	MNIST	Ray-Traced	Yale B
n	28	50	40
q	60,000	2560	1520
Ni	1000	128	40
С	10	20	38

Recall:

- *n* is the sample (image) size $n \times n$
- q is the total number of samples
- ► N_i is the number of samples in class i
- C is the number of total classes

Classification accuracy:

- Subspace dimension is p = C 1
- Project new query image into the subspace and perform:
 - NN: Nearest neighbor search
 - NC: Nearest center search

	MNIST	Ray-Traced	extended Yale B
# of Test Samples	10,000	1280	722
LDA (NN):	85.1%	99.6%	56.8% (w/PCA: 97.8%)
LDA (NC):	84.7%	97.9%	55.2% (w/PCA: 96.2%)
MLDA (NN):	93.2%	100%	95.7%
MLDA (NC):	91.4%	99.2%	94.8%

◆ロト ◆聞ト ◆臣ト ◆臣ト

New approach to multi-class classification

- Tensor Eigenvalue Decomposition
- Multi-linear LDA (MLDA):
 - Multi-class classification
- Experimental results:
 - Hand written digits (MNIST)
 - Objects (ray-traced)
 - Faces (Yale-B)
- Outperforms traditional Matrix LDA
- Overcomes "small sample size" issues

<ロト < 団ト < 団ト < 団ト

- ► Compare current MLDA with other "tensor-based" approaches
 - CONDECOMP/PARAFAC
 - Tucker decompositions (HOSVD)
- Investigate multi-linear extension to other linear and non-linear subspace learning models:
 - ► CCA, ICA, LLE, ISOMAP, Compressed Sensing, etc.
- Hybrid machine learning methods:
 - Multi-linear subspace projections as a pre-cursor to decision trees, deep neural nets, long-short term memory networks, etc.

<ロト < 団ト < 団ト < 団ト

Questions?

Ξ

◆ロト ◆聞ト ◆注ト ◆注ト