376 research outputs found

    Task Force progress report

    Get PDF
    A report by Louis F. Brakeman mentioning some of some steps that are being taken by the Task Force in order to procure new black faculty. It also explains that they are gathering material on various black studies programs and departments around the country in order to better inform their own development of a Black Studies program

    Black Demands 15 years later

    Get PDF
    Lecture delivered at a Faculty Luncheon by Provost Louis Brakeman recapping events in 1968-197

    Vesicoureteral Reflux, Reflux Nephropathy, and End-Stage Renal Disease

    Get PDF
    Objective. To review the contribution of vesicoureteral reflux and reflux nephropathy to end-stage renal disease. Data Source. Published research articles and publicly available registries. Results. Vesicoureteral reflux (VUR) is commonly identified in pediatric patients and can be associated with reflux nephropathy (RN), chronic kidney disease (CKD), and rarely end-stage renal disease (ESRD). Patients with reduced GFR, bilateral disease, grade V VUR, proteinuria, and hypertension are more likely to progress to CKD and ESRD. Because progression to ESRD is rare in VUR and often requires many decades to develop, there are limited prospective, randomized, controlled trials available to direct therapy to prevent progression to ESRD. Conclusions. Identification of patients with increased risk of progression to CKD and ESRD should be the goal of clinical, biochemical, and radiological evaluation of patients with VUR. Treatment of patients with VUR should be directed at preventing new renal injury and preserving renal function

    Louis Brakeman addresses basic problems for Task Force

    Get PDF
    Memo from Louis Brakeman from the Task Force inviting faculty to discuss challenges that they are facing. Dated February 26, 1970, on Denison University letterhead

    Supplementary statement on philosophy

    Get PDF
    A supplementary statement by Louis Brakeman addressing the need for a significant increase in black students on campus, which is essential for the development of a humane life for black students. .

    Afadin orients cell division to position the tubule lumen in developing renal tubules

    Get PDF
    In many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity in vivo is not known. We recently found the F-actin binding protein Afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here we demonstrate Afadin is required for lumen continuity by orienting the mitotic spindle during cell division. Using an in vitro 3D cyst model, we find Afadin localizes to the cell cortex adjacent to the spindle poles and orients the mitotic spindle. In tubules, cell division may be oriented relative to two axes, longitudinal and apical-basal. Unexpectedly, in vivo examination of early stage developing nephron tubules reveals cell division is not oriented in the longitudinal (or planar polarized) axis. However, cell division is oriented perpendicular to the apical-basal axis. Absence of Afadin in vivo leads to misorientation of apical-basal cell division in nephron tubules. Together these results support a model whereby Afadin determines lumen placement by directing apical-basal spindle orientation, which generates a continuous lumen and normal tubule morphogenesis

    The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is characterized by intracellular, insoluble Lewy bodies composed of highly stable α-synuclein (α-syn) amyloid fibrils. α-synuclein is an intrinsically disordered protein that has the capacity to assemble to form β-sheet rich fibrils. Oxidiative stress and metal rich environments have been implicated in triggering assembly. Here, we have explored the composition of Lewy bodies in post-mortem tissue using electron microscopy and immunogold labeling and revealed dityrosine crosslinks in Lewy bodies in brain tissue from PD patients. In vitro, we show that dityrosine cross-links in α-syn are formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress by fluorescence and confirmed using mass-spectrometry. A covalently cross-linked dimer isolated by SDS-PAGE and mass analysis showed that dityrosine dimer was formed via the coupling of Y39-Y39 to give a homo dimer peptide that may play a key role in formation of oligomeric and seeds for fibril formation. Atomic force microscopy analysis reveals that the covalent dityrosine contributes to the stabilization of α-syn assemblies. Thus, the presence of oxidative stress induced dityrosine could play an important role in assembly and toxicity of α-syn in PD

    Persistent Increase in Serum Ferritin Levels despite Converting to Permanent Vascular Access in Pediatric Hemodialysis Patients: Pediatric Nephrology Research Consortium Study

    Get PDF
    Our objective was to examine serum ferritin trends after conversion to permanent vascular access (PVA) among children who started hemodialysis (HD) using tunneled cuffed catheters (TCC). Retrospective chart reviews were completed on 98 subjects from 20 pediatric HD centers. Serum ferritin levels were collected at the creation of PVA and for two years thereafter. There were 11 (11%) arteriovenous grafts (AVG) and 87 (89%) arteriovenous fistulae (AVF). Their mean TCC use was 10.4 ± 17.3 months. Serum ferritin at PVA creation was elevated at 562.64 ± 492.34 ng/mL, increased to 753.84 ± 561.54 ng/mL (p = \u3c 0.001) in the first year and remained at 759.60 ± 528.11 ng/mL in the second year (p = 0.004). The serum ferritin levels did not show a statistically significant linear association with respective serum hematocrit values. In a multiple linear regression model, there were three predictors of serum ferritin during the first year of follow-up: steroid-resistant nephrotic syndrome as primary etiology (p = 0.035), being from a center that enrolled \u3e10 cases (p = 0.049) and baseline serum ferritin level (p = 0.017). Increasing serum ferritin after conversion to PVA is concerning. This increase is not associated with serum hematocrit trends. Future studies should investigate the correlation of serum transferrin saturation and ferritin levels in pediatric HD patients

    Effect of Oxidative Stress on Homer Scaffolding Proteins

    Get PDF
    Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G). Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress

    Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

    Get PDF
    Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication
    corecore