445 research outputs found

    Constraints on UV Absorption in the Intracluster Medium of Abell 1030

    Get PDF
    We present results from an extensive HST spectroscopic search for UV absorption lines in the spectrum of the quasar B2~1028+313, which is associated with the central dominant galaxy in the cluster Abell~1030 (z=0.178z=0.178). This is one of the brightest known UV continuum sources located in a cluster, and therefore provides an ideal opportunity to obtain stringent constraints on the column densities of any cool absorbing gas that may be associated with the intracluster medium (ICM). Our HST spectra were obtained with the FOS and GHRS, and provide continuous coverage at rest-frame wavelengths from 975\sim 975 to 4060~\AA, thereby allowing the investigation of many different elements and ionization levels. We utilize a new technique that involves simultaneous fitting of large numbers of different transitions for each species, thereby yielding more robust constraints on column densities than can be obtained from a single transition. This method yields upper limits of 10111013\lesssim 10^{11} - 10^{13} cm2^{-2} on the column densities of a wide range of molecular, atomic and ionized species that may be associated with the ICM. We also discuss a possible \Lya and C IV absorption system associated with the quasar. We discuss the implications of the upper limits on cool intracluster gas in the context of the physical properties of the ICM and its relationship to the quasar.Comment: Astrophysical Journal, in press, 19 pages, includes 5 PostScript figures. Latex format, uses aas2pp4.sty and epsfig.sty file

    Properties of compact 250 μm emission and H II regions in M 33 (HERM33ES)

    Get PDF
    Aims. Within the framework of the HERM33ES key program, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission sources. We extracted a catalogue of sources at 250 μm in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Hα shells in the northern part of the galaxy. Methods. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250 μm SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24 μm and Hα for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Hα, far-ultraviolet from GALEX, and infrared from both Spitzer IRAC 8 μm and MIPS 24 μm in order to make comparisons. Results. For the 159 compact sources selected at 250 μm, we find a very strong Pearson correlation coefficient with the MIPS 24 μm emission (r_(24) = 0.94) and a rather strong correlation with the Hα emission, although with more scatter (r_(Hα) = 0.83). The morphological study of the Hα shells shows a displacement between far-ultraviolet, Hα, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Hα shell structures. Conclusions. The very strong link between the 250 μm compact emission and the 24 μm and Hα emissions, by recovering the star formation rate from standard recipes for H II regions, allows us to provide star formation rate calibrations based on the 250 μm compact emission alone. The different locations of the Hα and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Hα shells and the associated cool dust

    Properties of compact 250 \mu m emission and HII regions in M33 (HERM33ES)

    Get PDF
    Within the framework of the HERM33ES Key Project, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission sources. We extracted a catalogue of sources at 250um in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Halpha shells in the northern part of the galaxy. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250um SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24um and Halpha for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Halpha, far-UV from GALEX, and infrared from both Spitzer IRAC 8um and MIPS 24um in order to make comparisons. For the 159 compact sources selected at 250um, we find a very strong Pearson correlation coefficient with the MIPS 24um emission (r24 = 0.94) and a rather strong correlation with the Halpha emission, although with more scatter (rHa = 0.83). The morphological study of the Halpha shells shows a displacement between far-ultraviolet, Halpha, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Halpha shell structures. The very strong link between the 250um compact emission and the 24um and Halpha emissions, by recovering the star formation rate from standard recipes for HII regions, allows us to provide star formation rate calibrations based on the 250um compact emission alone. The different locations of the Halpha and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Halpha shells and the associated cool dust.Comment: 4 pages, 3 figures, Accpeted for publication in the A&A Herschel Special Issu

    Star formation in M33 (HerM33es)

    Full text link
    Within the key project "Herschel M33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6um to 500um, along with HI, Halpha, and GALEX UV data, we have studied the dust at high spatial resolutions of 150pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [CII], [OI], and CO maps obtained in a first spectroscopic study of one 2'x2' subregion of M33, located on the inner, northern spiral arm and encompassing the HII region BCLMP302.Comment: 6 pages, to appear in the proceedings of the 5th Zermatt ISM Symposium "Conditions and impact of star formation: New results with Herschel and beyond

    Spitzer Uncovers Active Galactic Nuclei Missed by Optical Surveys in 7 Late-type Galaxies

    Full text link
    We report the discovery using Spitzers high resolution spectrograph of 7 Active Galactic Nuclei (AGN) in a sample of 32 late-type galaxies that show no definitive signatures of AGN in their optical spectra. Our observations suggest that the AGN detection rate in late-type galaxies is possibly 4 times larger than what optical spectroscopic observations alone suggest. We demonstrate using photoionization models with an input AGN and an extreme EUV-bright starburst ionizing radiation field that the observed mid-infrared line ratios cannot be replicated unless an AGN contribution, in some cases as little as 10% of the total galaxy luminosity, is included. These models show that when the fraction of the total luminosity due to the AGN is low, optical diagnostics are insensitive to the presence of the AGN. In this regime of parameter space, the mid-infrared diagnostics offer a powerful tool for uncovering AGN missed by optical spectroscopy. The AGN bolometric luminosities in our sample range from ~3 X 10^41 - ~2 X 10^43 ergs s^-1, which, based on the Eddington limit, corresponds to a lower mass limit for the black hole that ranges from ~3 X 10^3Mdot to as high as ~1.5 X 10^5Mdot. These lower mass limits however do not put a strain on the well-known relationship between the black hole mass and the host galaxy's stellar velocity dispersion established in predominantly early-type galaxies. Our findings add to the growing evidence that black holes do form and grow in low-bulge environments and that they are significantly more common than optical studies indicate.Comment: 8 figures, 17 pages, astro-ph\0801.2766 (Abel & Satyapal 2008; ApJ accepted) and this posting designed to form a two-part investigatio

    Cool gas and dust in M33: Results from the Herschel M33 extended survey (HERM33ES)

    Get PDF
    We present an analysis of the first space-based far-IR-submm observations of M 33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H2_2 content. In this Letter, we measure the dust emission cross-section σ\sigma using SPIRE and recent CO and \HI\ observations; a variation in σ\sigma is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the \HI\ column, yields a morphology similar to that observed in CO. The H2_2/\HI\ mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M 33.Comment: 5 pages, 5 figures Accepted for publication in Astronomy and Astrophysic

    Dense Molecular Gas Associated with the Circumnuclear Star Forming Ring in the Barred Spiral Galaxy NGC 6951

    Get PDF
    We present high resolution (3" - 5") observations of CO(1-0) and HCN(1-0) emission from the circumnuclear star forming ring in the barred spiral galaxy NGC 6951, a host of a type-2 Seyfert, using the Nobeyama Millimeter Array and 45 m telescope. We find that most of the HCN emission is associated with the circumnuclear ring, where vigorous star formation occurs. The HCN to CO integrated intensity ratio is also enhanced in the star forming ring; the peak value of HCN/CO ratio is 0.18, which is comparable to the ratio in the starbursts NGC 253 and M82. The formation mechanism of dense molecular gas has been investigated. We find that the shocks along the orbit crowding do not promote the formation of the dense molecular gas effectively but enhance the presence of low density GMCs. Instead, gravitational instabilities of the gas can account for the dense molecular gas formation. The HCN/CO ratio toward the Seyfert nucleus of NGC 6951 is a rather normal value (0.086), in contrast with other Seyferts NGC 1068 and M51 where extremely high HCN/CO value of ~ 0.5 have been reported.Comment: 33 pages, 17 figures, to appear in the Astrophysical Journa

    A Deep Look at the Emission-Line Nebula in Abell 2597

    Get PDF
    The close correlation between cooling flows and emission-line nebulae in clusters of galaxies has been recognized for over a decade and a half, but the physical reason for this connection remains unclear. Here we present deep optical spectra of the nebula in Abell 2597, one of the nearest strong cooling-flow clusters. These spectra reveal the density, temperature, and metal abundances of the line-emitting gas. The abundances are roughly half-solar, and dust produces an extinction of at least a magnitude in V. The absence of [O III] 4363 emission rules out shocks as a major ionizing mechanism, and the weakness of He II 4686 rules out a hard ionizing source, such as an active galactic nucleus or cooling intracluster gas. Hot stars are therefore the best candidate for producing the ionization. However, even the hottest O stars cannot power a nebula as hot as the one we see. Some other nonionizing source of heat appears to contribute a comparable amount of power. We show that the energy flux from a confining medium can become important when the ionization level of a nebula drops to the low levels seen in cooling-flow nebulae. We suggest that this kind of phenomenon, in which energy fluxes from the surrounding medium augment photoelectric heating, might be the common feature underlying the diverse group of objects classified as LINERS.Comment: 33 Latex pages, including 16 Postscript figures, to appear in 1997 September 1 Astrophysical Journa

    First Detection of Millimeter/Submillimeter Extragalactic H2O Maser Emission

    Full text link
    We report the first detection of an extragalactic millimeter wavelength H2O maser at 183 GHz towards NGC 3079 using the Submillimeter Array (SMA), and a tentative submillimeter wave detection of the 439 GHz maser towards the same source using the James Clerk Maxwell Telescope (JCMT). These H2O transitions are known to exhibit maser emission in star-forming regions and evolved stars. NGC 3079 is a well-studied nuclear H2O maser source at 22 GHz with a time-variable peak flux density in the range 3 -- 12 Jy. The 183 GHz H2O maser emission, with peak flux density \sim0.5 Jy (7σ\sigma detection), also originates from the nuclear region of NGC 3079 and is spatially coincident with the dust continuum peak at 193 GHz (53 mJy integrated). Peak emission at both 183 and 439 GHz occurs in the same range of velocity as that covered by the 22 GHz spectrum. We estimate the gas to dust ratio of the nucleus of NGC 3079 to be \approx150, comparable to the Galactic value of 160. Discovery of maser emission in an active galactic nucleus beyond the long-known 22 GHz transition opens the possibility of future position-resolved radiative transfer modeling of accretion disks and outflows <1<1 pc from massive black holes.Comment: 12 pages, 3 figures, ApJ Letters accepte

    Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

    Get PDF
    Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.Comment: 54 pages, 20 figures, accepted for publication in The Astrophysical Journa
    corecore