2,411 research outputs found

    Evaluation of the usefulness of a computer‐based learning program to support student learning in pharmacology

    Get PDF
    This study aims to evaluate the effectiveness of a computer‐based teaching program in supporting and enhancing traditional teaching methods. The program covers the pharmacology of inflammation and has been evaluated with a group of second‐year medical students at a UK university. The study assessed subject‐specific knowledge using a pre‐ and post‐test and surveyed, by questionnaire, students’ perceptions of the usefulness of the program to support learning before and after use. The use of computers for learning amongst this cohort of students was widespread. The results demonstrated an increase in students ‘ knowledge of the pharmacology of inflammation, coupled with a positive attitude towards the CBL program they had used and the advantages that this mode of study may provide in enabling students to manage their own learning. However, students did not feel that the program could substitute for traditional teaching (lectures)

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    The ADHM Construction of Instantons on Noncommutative Spaces

    Full text link
    We present an account of the ADHM construction of instantons on Euclidean space-time R4\mathbb{R}^4 from the point of view of noncommutative geometry. We recall the main ingredients of the classical construction in a coordinate algebra format, which we then deform using a cocycle twisting procedure to obtain a method for constructing families of instantons on noncommutative space-time, parameterised by solutions to an appropriate set of ADHM equations. We illustrate the noncommutative construction in two special cases: the Moyal-Groenewold plane Rℏ4\mathbb{R}^4_\hbar and the Connes-Landi plane Rξ4\mathbb{R}^4_\theta.Comment: Latex, 40 page

    Shared Antigenic Epitopes on the V3 Loop of HIV-1 gp120 and Proteins on Activated Human T Cells

    Get PDF
    AbstractProliferation of HIV-1 in the infected host is characterized by a progressive loss of CD4+T lymphocytes and consequent dysregulation of the immune system. Both direct and indirect mechanisms have been proposed. We show here that proteins with molecular weights 35, 48, and 110 kDa on stimulated primary human T cells are recognized by neutralizing antibodies against the V3 loop of HIV-1 gp120. Recognition is specific since it can be blocked by a recombinant HIV-1 gp120. Furthermore, these V3 monoclonal antibodies, as well as sera from AIDS patients that recognized these V3-like proteins, induced killing of HIV-1-infected as well as uninfected T cells. This killing was also inhibited by HIV-1 gp120 V3 peptides. These results indicate that the V3 loop shares epitopes with proteins on stimulated T cells. This may be an additional autoimmune mechanism contributing to CD4+T cell disappearance in AIDS. V3 antibodies have been proposed as potential prophylactic agents. However, if such vaccines were based on certain epitopes, they might induce cross-reacting immune responses with cellular proteins. Vaccine candidates should be evaluated for such potential effects

    Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Get PDF
    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used

    Statistical Similarities Between WSA‐ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016

    Full text link
    Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet’s orbital location for limited time spans. Due to MAVEN’s highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars’ magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA‐ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation‐long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long‐term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.Plain Language SummaryIf we ever have a manned mission to Mars, one of the numerous concerns would be space weather conditions and their effects on spacecraft in flight. One particular element of space weather that we like to focus on is solar wind: plasma that is continuously emitted from the Sun. Solar wind can effect communication between Earth and spacecraft, GPS services, and other vital elements of space travel. We therefore want a good understanding of space weather and want to forecast conditions before ever traveling there. Currently, there are not always means to directly measure solar wind, so we rely on numerical models. In this study, we used the model called WSA‐ENLIL+Cone to compare its solar wind measurements and one of our spacecraft orbiting Mars to see how well it did and to see if we can rely on it for solar wind forecasts. As it turns out, the model can be used for forecasting baseline values of different solar wind parameters, for example, temperature, even with limited information. We show in this study that the WSA‐ENLIL+Cone model allows us to forecast solar wind conditions and helps us to understand what is going on at that seemingly barren planet.Key PointsGeneralized, extensive WEC model simulations provide analogous confidence levels and results as detailed, relatively short simulationsWSA‐ENLIL+Cone model succeeds at predicting fast solar wind radial velocityPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142959/1/swe20547.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142959/2/swe20547_am.pd

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain
    • 

    corecore