556 research outputs found

    Rapid depletion of dissolved organic sulphur (DOS) in freshwaters

    Get PDF
    Sulphur (S) is a key macronutrient for all organisms, with similar cellular requirements to that of phosphorus (P). Studies of S cycling have often focused on the inorganic fraction, however, there is strong evidence to suggest that freshwater microorganisms may also access dissolved organic S (DOS) compounds (e.g. S-containing amino acids). The aim of this study was to compare the relative concentration and depletion rates of organic 35S-labelled amino acids (cysteine, methionine) with inorganic S (Na235SO4) in oligotrophic versus mesotrophic river waters draining from low nutrient input and moderate nutrient input land uses respectively. Our results showed that inorganic SO42− was present in the water column at much higher concentrations than free amino acids. In contrast to SO42−, however, cysteine and methionine were both rapidly depleted from the mesotrophic and oligotrophic waters with a halving time < 1 h. Only a small proportion of the DOS removed from solution was mineralized and excreted as SO42− (< 16% of the total taken up) suggesting that the DOS could be satisfying a demand for carbon (C) and S. In conclusion, even though inorganic S was abundant in freshwater, it appears that the aquatic communities retained the capacity to take up and assimilate DOS

    Facilitating the analysis of a UK national blood service supply chain using distributed simulation

    Get PDF
    In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance

    First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K

    Get PDF
    This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8×\times1020^{20} and 6.3×\times1020^{20} protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects

    Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors

    Get PDF
    Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detector. However, the fiducial mass required for far detectors of the next generation of neutrino oscillation experiments far exceeds what has been demonstrated so far. Scaling to this larger mass, as well as the requirement for underground construction places a number of additional constraints on the design. A prototype 35-ton cryostat was built at Fermi National Acccelerator Laboratory to test the functionality of the components foreseen to be used in a very large far detector. The Phase I run, completed in early 2014, demonstrated that liquid argon could be maintained at sufficient purity in a membrane cryostat. A time projection chamber was installed for the Phase II run, which collected data in February and March of 2016. The Phase II run was a test of the modular anode plane assemblies with wrapped wires, cold readout electronics, and integrated photon detection systems. While the details of the design do not match exactly those chosen for the DUNE far detector, the 35-ton TPC prototype is a demonstration of the functionality of the basic components. Measurements are performed using the Phase II data to extract signal and noise characteristics and to align the detector components. A measurement of the electron lifetime is presented, and a novel technique for measuring a track\u27s position based on pulse properties is described

    Measurement of the single pi(0) production rate in neutral current neutrino interactions on water

    Get PDF
    The single pi(0) production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the empty set, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the Pempty setD contained water (2.64 x 10(20) protons-on-target) and also periods without water (3.49 x 10(20) protons-on-target). A measurement of the neutral current single pi(0) production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106 +/- 41 +/- 69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68 +/- 0.26(stat) +/- 0.44(sys) +/- 0.12(flux). The nominal simulation uses a flux integrated cross section of 7.63 x 10(-39) cm(2) per nucleon with an average neutrino interaction energy of 1.3 GeV

    Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations

    Get PDF
    The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 19641, and CP violation in the weak interactions of quarks was soon established2. Sakharov proposed3 that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter–antimatter disparity through a process called leptogenesis4. Leptonic mixing, which appears in the standard model’s charged current interactions5,6, provides a potential source of CP violation through a complex phase δCP, which is required by some theoretical models of leptogenesis7,8,9. This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments10,11. Until now, the value of δCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of δCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3σ). The 3σ confidence interval for δCP, which is cyclic and repeats every 2π, is [−3.41, −0.03] for the so-called normal mass ordering and [−2.54, −0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter–antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks

    Measurement of neutrino and antineutrino neutral-current quasielasticlike interactions on oxygen by detecting nuclear deexcitation gamma rays

    Get PDF
    Neutrino- and antineutrino-oxygen neutral-current quasielasticlike interactions are measured at Super-Kamiokande using nuclear deexcitation gamma rays to identify signal-like interactions in data from a 14.94(16.35) x 10(20) protons-on-target exposure of the T2K neutrino (antineutrino) beam. The measured flux-averaged cross sections on oxygen nuclei are = 1.70 +/- 0.17(stat.)(-0.38)(+0.51) (syst.) x 10(-38) cm(2)/oxygen with a flux-averaged energy of 0.82 GeV and = 0.98 +/- 0.16(stat.)(-0.19)(+0.26)(syst.) x 10(-38)cm(2)/oxygen with a flux-averaged energy of 0.68 GeV, for neutrinos and antineutrinos, respectively. These results are the most precise to date, and the antineutrino result is the first cross section measurement of this channel. They are compared with various theoretical predictions. The impact on evaluation of backgrounds to searches for supernova relic neutrinos at present and future water Cherenkov detectors is also discussed

    J-PARC Neutrino Beamline Upgrade Technical Design Report

    Get PDF
    In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to 2×10222\times{}10^{22} protons-on-target in the next decade, aiming at an initial observation of CP violation with 3σ3\sigma or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described

    T2K ND280 Upgrade - Technical Design Report

    Get PDF
    In this document, we present the Technical Design Report of the Upgrade of the T2K Near Detector ND280. The goal of this upgrade is to improve the Near Detector performance to measure the neutrino interaction rate and to constrain the neutrino interaction cross-sections so that the uncertainty in the number of predicted events at Super-Kamiokande is reduced to about 4%. This will allow to improve the physics reach of the T2K-II project. This goal is achieved by modifying the upstream part of the detector, adding a new highly granular scintillator detector (Super-FGD), two new TPCs (High-Angle TPC) and six TOF planes. Details about the detector concepts, design and construction methods are presented, as well as a first look at the test-beam data taken in Summer 2018. An update of the physics studies is also presented
    corecore