929 research outputs found

    Symmetry properties of one- and two- electron molecular integrals

    Get PDF
    The maximum numbers of distinct one- and two-electron integrals that arise in calculating the electronic energy of a molecule are discussed. It is shown that these may be calculated easily using the character table of the symmetry group of the set of basis functions used to express the wave function. Complications arising from complex group representations and from a conflict of symmetry between the basis set and the nuclear configuration are considered and illustrated by examples

    The B-coder: an improved binary arithmetic coder and probability estimator

    Get PDF
    In this paper we present the B-coder, an efficient binary arithmetic coder that performs extremely well on a wide range of data. The B-coder should be classed as an `approximate’ arithmetic coder, because of its use of an approximation to multiplication. We show that the approximation used in the B-coder has an efficiency cost of 0.003 compared to Shannon entropy. At the heart of the B-coder is an efficient state machine that adapts rapidly to the data to be coded. The adaptation is achieved by allowing a fixed table of transitions and probabilities to change within a given tolerance. The combination of the two techniques gives a coder that out-performs the current state-of-the-art binary arithmetic coders

    The B-coder: an improved binary arithmetic coder and probability estimator

    Get PDF
    In this paper we present the B-coder, an efficient binary arithmetic coder that performs extremely well on a wide range of data. The B-coder should be classed as an `approximate’ arithmetic coder, because of its use of an approximation to multiplication. We show that the approximation used in the B-coder has an efficiency cost of 0.003 compared to Shannon entropy. At the heart of the B-coder is an efficient state machine that adapts rapidly to the data to be coded. The adaptation is achieved by allowing a fixed table of transitions and probabilities to change within a given tolerance. The combination of the two techniques gives a coder that out-performs the current state-of-the-art binary arithmetic coders

    Exploring alternative routes to realising the benefits of simulation in healthcare

    Get PDF
    Discrete event simulation should offer numerous benefits in designing healthcare systems but the reality is often problematic. Healthcare modelling faces particular challenges: genuine, fundamental variations in practice and an opposition to any suggestion of standardisation from some professional groups. This paper compares the experiences of developing a new simulation in an Accident and Emergency (A&E) Department, a subsequent adaptation for modelling an outpatient clinic and applications of a generic A&E simulation. These studies provide examples of three distinct approaches to realising the potential benefits of simulation: the bespoke, the reuse and the generic route. Reuse has many advantages: it is relatively efficient in exploiting previous modelling experience, delivering timely results while providing scope for adaptations to local practice. Explicitly demonstrating this willingness to adapt to local conditions and engaging with stakeholders is particularly important in healthcare simulation

    Floating s- and p-type Gaussian Orbitals

    Get PDF
    The advantages of including a small number of p-type gaussian functions in a floating spherical gaussian orbital calculation are pointed out and illustrated by calculations on molecules which previously have proved to be troublesome. These include molecules such as F2 with multiple lone pairs and C2H2 with multiple bonds. A feature of the results is the excellent correlation between the orbital energies and those of a double zeta calculation reported by Snyder and Basch

    Journal publishing with Acrobat: the CAJUN project

    Get PDF
    The publication of material in electronic form should ideally preserve, in a unified document representation, all of the richness of the printed document while maintaining enough of its underlying structure to enable searching and other forms of semantic processing. Until recently it has been hard to find a document representation which combined these attributes and which also stood some chance of becoming a de facto multi-platform standard. This paper sets out experience gained within the Electronic Publishing Research Group at the University of Nottingham in using Adobe Acrobat software and its underlying PDF (Portable Document Format) notation. The CAJUN project1 (CD-ROM Acrobat Journals Using Networks) began in 1993 and has used Acrobat software to produce electronic versions of journal papers for network and CD-ROM dissemination. The paper describes the project's progress so far and also gives a brief assessment of PDF's suitability as a universal document interchange standard

    Solitonic-exchange mechanism of surface~diffusion

    Full text link
    We study surface diffusion in the framework of a generalized Frenkel-Kontorova model with a nonconvex transverse degree of freedom. The model describes a lattice of atoms with a given concentration interacting by Morse-type forces, the lattice being subjected to a two-dimensional substrate potential which is periodic in one direction and nonconvex (Morse) in the transverse direction. The results are used to describe the complicated exchange-mediated diffusion mechanism recently observed in MD simulations [J.E. Black and Zeng-Ju Tian, Phys. Rev. Lett. {\bf 71}, 2445-2448(1993)].Comment: 22 Revtex pages, 9 figures to appear in Phys. Rev.

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Get PDF
    Measurements of electrons from {\nu}e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of missing energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons

    Searching for Solar KDAR with DUNE

    Get PDF
    The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions
    • …
    corecore