20 research outputs found

    Phytoformulation with hydroxycitric acid and capsaicin protects against high-fat-diet-induced obesity cardiomyopathy by reducing cardiac lipid deposition and ameliorating inflammation and apoptosis in the heart

    No full text
    Background and aim: Phytoformulation therapy is a pioneering strategy for the treatment of metabolic disorders and related diseases. The aim of the present study was to investigate the protective effect of a phytoformulation consisting of hydroxycitric acid and capsaicin against obesity-related cardiomyopathy. Experimental procedure: Sprague-Dawley rats were fed HFD for 21 weeks, and phytoformulation (100 mg/kg body weight) was administered orally for 45 days starting at week 16. Results and conclusion: We found that HFD supplementation resulted in significant hyperglycemia and caused an increase in cardiac lipid deposition, inflammation and apoptosis in the heart. Phytoformulation therapy not only significantly decreased blood levels of glucose, cholesterol, triglycerides, free fatty acids, and inflammatory cytokines in obese rats, but also protected cardiac tissue, as shown by histological analysis. Conversely, phytoformulation therapy decreased mRNA levels for sterol regulatory element-binding factor 1, fatty acid synthase, acetyl-CoA carboxylase, and fatty acid binding protein 1 genes involved in fatty acid synthesis and absorption in obese rats. It increased the levels of lysosomal acid lipase, hormone-sensitive lipase, and lipoprotein lipase genes involved in fatty acid degradation in the heart. In addition, the phytoformulation improved cardiac inflammation and apoptosis by downregulating the genes nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumour necrosis factor α, interleukin-6, toll-like receptor-4 (TLR-4), BCL2-associated X and caspase-3. In conclusion, our results show that the phytoformulation improved insulin sensitivity and attenuated myocardial lipid accumulation, inflammation, and apoptosis in the heart of HFD-induced obese rats by regulating fatty acid metabolism genes and downregulating NF-kB/TLR-4/caspase-3

    Correction to: Antiobesity potential of Piperonal: promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats

    No full text
    Correction Following publication of the original article [1], the authors requested a correction to the name of one of the co-authors. The correct name and spelling is V.V. Sathibabu Uddandrao. The original article has been updated

    Antiobesity potential of Piperonal: promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats

    No full text
    Abstract Background Black pepper or Piper nigrum is a well-known spice, rich in a variety of bioactive compounds, and widely used in many cuisines across the world. In the Indian traditional systems of medicine, it is used to treat gastric and respiratory ailments. The purpose of this investigation is to study the antihyperlipidemic and antiobesity effects of piperonal in high-fat diet (HFD)-induced obese rats. Methods Piperonal, an active constituent of Piper nigrum seeds, was isolated and confirmed by HPLC, 1H and 13C NMR spectroscopy. Male SD rats were fed on HFD for 22 weeks; Piperonal was supplemented from the 16th week as mentioned in the experimental design. Changes in body weight and body composition were measured by TOBEC, bone mineral composition and density were measured by DXA, and adipose tissue distribution was measured by 7 T–MRI. Plasma levels of glucose, insulin, insulin resistance and lipid profiles of plasma, liver and kidney, adipocyte hormones and liver antioxidants were evaluated using standard kit methods. Expression levels of adipogenic and lipogenic genes, such as PPAR-γ, FAS, Fab-4, UCP-2, SREBP-1c, ACC, HMG-COA and TNF-α were measured by RT-PCR. Histopathological examination of adipose and liver tissues was also carried out in experimental rats. Results HFD substantially induced body weight, fat%, adipocyte size, circulatory and tissue lipid profiles. It elevated the plasma levels of insulin, insulin resistance and leptin but decreased the levels of adiponectin, BMC and BMD. Increased expression of PPAR-γ, FAS, Fab-4, UCP-2, SREBP-1c, ACC, and TNF-α was noticed in HFD-fed rats. However, supplementation of piperonal (20, 30 and 40 mg/kg b.wt) for 42 days considerably and dose-dependently attenuated the HFD-induced alterations, with the maximum therapeutic activity being noticed at 40 mg/kg b.wt. Conclusions Piperonal significantly attenuated HFD-induced body weight and biochemical changes through modulation of key lipid metabolizing and obesogenic genes. Our findings demonstrate the efficacy of piperonal as a potent antiobesity agent, provide scientific evidence for its traditional use and suggest the possible mechanism of action
    corecore