7 research outputs found

    Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

    Get PDF
    Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temperature, which reveals that these layers still contain a large defect concentration. The current–voltage characteristic of indium selenide thin film devices was measured under simulated AM2 conditions. The solar conversion efficiency of these devices is lower than 0.6%. The high concentration of defects reduces the diffusion length of minority carriers down to values round to 0.2 ÎŒ[email protected] ; [email protected]

    Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach

    No full text
    International audienceWe perform the asymptotic analysis of parabolic equations with stiff transport terms. This kind of problem occurs, for example, in collisional gyrokinetic theory for tokamak plasmas, where the velocity diffusion of the collision mechanism is dominated by the velocity advection along the Laplace force corresponding to a strong magnetic field. This work appeal to the filtering techniques. Removing the fast oscillations associated to the singular transport operator, leads to a stable family of profiles. The limit profile comes by averaging with respect to the fast time variable, and still satisfies a parabolic model, whose diffusion matrix is completely characterized in terms of the original diffusion matrix and the stiff transport operator. Introducing first order correctors allows us to obtain strong convergence results, for general initial conditions (not necessarily well prepared)

    Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces

    No full text
    corecore