31 research outputs found

    Augmenting Smart Buildings and Autonomous Vehicles with Wearable Thermal Technology

    Full text link
    Smart buildings and autonomous vehicles are expected to see rapid growth and adoption in the coming decades. Americans spend over 90% of their lives in buildings or automobiles, meaning that 90% of their lives could be spent interfacing with intelligent environments. EMBR Labs has developed EMBR WaveTM, a wearable thermoelectric system, for introducing thermal sensation as a connected mode of interaction between smart environments and their occu-pants. In this paper we highlight applications of wearable thermal technology for passengers in autonomous vehicles and occupants of smart buildings. Initial find-ings, collected through partnerships with Draper and UC Berkeley, respectively, are presented that illustrate the potential for wearable thermal technology to im-prove the situational awareness of passengers in autonomous vehicles and im-prove personal comfort in smart buildings

    Differences in reported linguistic thermal sensation between Bangla and Japanese speakers

    Get PDF
    Background: Thermal sensation is a fundamental variable used to determine thermal comfort and is most frequently evaluated through the use of subjective reports in the field of environmental physiology. However, there has been little study of the relationship between the semantics of the words used to describe thermal sensation and the climatic background. The present study investigates the linguistic differences in thermal reports from native speakers of Bangla and Japanese. Methods: A total of 1141 university students (932 in Bangladesh and 209 in Japan) responded to a questionnaire survey consisting of 20 questions. Group differences between Bangladeshi and Japanese respondents were then tested with a chi-square test in a crosstab analysis using SPSS (version 21). Results: For the Bangla-speaking respondents, the closest feeling of thermal comfort was “neutral” (66.6%) followed by “slightly cool” (10.2%), “slightly cold” (6.0%), “slightly hot” (4.1%), and “cold” (3.8%). For the Japanese respondents, the closest feeling of thermal comfort was “cool” (38.3%) followed by “slightly cool” (20.4%), “neutral” (14.6%), “slightly warm” (13.1%), and “warm” (10.7%). Of the Bangladeshi respondents, 37.7% reported that they were sensitive to cold weather and 18.1% reported that they were sensitive to hot weather. Of the Japanese respondents, 20.6% reported that they were sensitive to cold weather and 29.2% reported that they were sensitive to hot weather. Of the Bangladeshi respondents, 51.4% chose “higher than 29 °C” as hot weather and 38.7% of the Japanese respondents chose “higher than 32 °C” as hot weather. In the case of cold weather, 43.1% of the Bangladeshi respondents selected “lower than 15 °C” as cold weather and 53.4% of the Japanese respondents selected “lower than 10 °C” as cold weather. Conclusions: Most of the Bangla-speaking respondents chose “neutral” as the most comfortable temperature, and most of the Japanese respondents chose “cool.” Most of the Bangladeshi respondents reported that they were sensitive to “cold temperatures,” but most of the Japanese respondents reported that they were sensitive to “hot temperatures.

    The Indoor Thermal Environment in Fencing Halls: Assessment of the Environmental Conditions Through an Objective and Subjective Approach

    No full text
    As the importance of sport practice is currently growing, the evaluation of the environmental parameters and especially of the thermal conditions in sport halls is particularly relevant, since they can affect the health and perfor-mance of the athletes. In particular, as a lack of studies has been detected and current standards are missing a scientific base for the determination of the environmental parameters, a methodology for assessing the indoor thermal environment in fencing halls has been provided, starting from a case study. This research leads also to preliminary results obtained through objective and subjective measurements and lays the groundwork for future studies

    An Ergonomic Approach of IEQ Assessment: A Case Study

    No full text
    Only in the last fifteen years, the application of the ergonomics principles stated the need to achieve a good IEQ (indoor environmental quality) as a result of thermal, visual, acoustic comfort and indoor air quality (IAQ). The awareness increased that an adequate design of the indoor environment, where people work and live, requires a synergic approach to all facets involved in full compliance with sustainability. IEQ strictly affects the overall building energy performances and exhibits an antagonistic relationship with respect to the energy saving requirements. In addition, the effects of low IEQ levels on the health and the productivity at work could even greater than those related to the energy costs of building facilities. The role played by IEQ is very important especially in school environments. Particularly, children are extra sensitive to a poor indoor environment as they are physically still developing and, in comparison to healthy adults, will suffer the consequences of a poor indoor environment with also negative effects in learning ability. Because of all mentioned issues an integrated approach in the design and in the assessment of school buildings is required where ergonomics plays a crucial role. Since more than 20 years InEQualitES (Indoor Environmental Quality and Energy Saving) team, made by researchers and professors from Universities of Salerno and Naples, has focused the research on the environmental quality in schools. The experience gained in the field allowed to build a large database of subjective and objective data and helped us to find effective solution aimed to solve most common problems related to the application of assessment methods. Based upon this experience, this discussion will be mainly focused to the main criticalities related to the thermal comfort assessment in schools with special reference to the integration of objective investigations (referred to a mean subject statistically significant) and subjective investigations which are the only able to show possible differences (age, gender and so on) in experienced perception

    Simulation of PMV and PPD thermal comfort using EnergyPlus

    No full text
    This work aims to simulate the thermal comfort for the user of a movie theater in the dimension related to considering the thermal environment parameters by the using EnergyPlus software. The results from simulation are then compared with the experimental ones. In order to calculate and model the thermal comfort, it was necessary a proper characterization of the space that included the measured occupancy, thermal environment variables, distinct electric equipment and lights. To compute the Predicted Mean Vote (PMV) and the Predictable Percentage of Dissatisfied (PPD) in EnergyPlus, the metabolic rate, air velocity and clothing insulation were defined according to the cinema specifications. The results obtained from EnergyPlus were then compared with the experimentally measured ones. Minor differences were observed regarding the comfort sensation. Despite the differences, the variation in the percentage of dissatisfied people is smaller than 2%. Furthermore, this work also allowed verifying that the occupancy rate is a determining factor in the thermal comfort sensation and, in this case, people provided the necessary energy to heat the cinema room in the second session that occurred at night.The authors would like to express their gratitude for the support given by FCT within the Project Scope UID/CEC/00319/2019 (ALGORITMI) and Project Scope UID/EMS/04077/2019 (METRICS)
    corecore