247 research outputs found

    Advantage of four-electrode over two-electrode defibrillators

    Get PDF
    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish the normal heart rate. We propose a new technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of such a new technique. We compare three different shock protocols, namely, a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80 % in the energy required for a defibrillation success rate of 90 %. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock

    Impurity-related intraband absorption in coupled quantum dot-ring structure under lateral electric field

    Get PDF
    The effects of a lateral electric field on intraband absorption in GaAs/GaAlAs two-dimensional coupled quantum dot-ring structure with an on-centre hydrogenic donor impurity is investigated. The confining potential of the system consists of two parabolas with various confinement energies. The calculations are made using the exact diagonalization technique. A selection rule for intraband transitions was found for x-polarized incident light. The absorption spectrum mainly exhibits a redshift with the increment of electric field strength. On the other hand, the absorption spectrum can exhibit either a blue- or redshift depending on the values of confinement energies of dot and ring. Additionally, electric field changes the energetic shift direction influenced by the variation of barrier thickness of the structure

    Phase instabilities in hexagonal patterns

    Get PDF
    The general form of the amplitude equations for a hexagonal pattern including spatial terms is discussed. At the lowest order we obtain the phase equation for such patterns. The general expression of the diffusion coefficients is given and the contributions of the new spatial terms are analysed in this paper. From these coefficients the phase stability regions in a hexagonal pattern are determined. In the case of Benard-Marangoni instability our results agree qualitatively with numerical simulations performed recently.Comment: 6 pages, 6 figures, to appear in Europhys. Let

    Thermal convection in a rotating binary viscoelastic liquid mixture

    Get PDF
    In this work we report theoretical and numerical results on convection in a viscoelastic binary mixture under rotation. In particular, we focus in the Maxwelian case of viscoelastic fluid. We obtain explicit expressions for the convective thresholds in terms of the mixture parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic rigid-rigid boundary conditions

    Planform selection in two-layer Benard-Marangoni convection

    Full text link
    Benard-Marangoni convection in a system of two superimposed liquids is investigated theoretically. Extending previous studies the complete hydrodynamics of both layers is treated and buoyancy is consistently taken into account. The planform selection problem between rolls, squares and hexagons is investigated by explicitly calculating the coefficients of an appropriate amplitude equation from the parameters of the fluids. The results are compared with recent experiments on two-layer systems in which squares at onset have been reported.Comment: 17 pages, 7 figures, oscillatory instability included, typos corrected, references adde

    Modeling of anisotropic properties of double quantum rings by the terahertz laser field

    Get PDF
    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field

    Vocabulary intervention for adolescents with language disorder: a systematic review

    Get PDF
    Background: Language disorder and associated vocabulary difficulties can persist into adolescence, and can impact on long-term life outcomes. Previous reviews have shown that a variety of intervention techniques can successfully enhance students’ vocabulary skills; however, none has investigated vocabulary intervention specifically for adolescents with language disorder. Aims: To carry out a systematic review of the literature on vocabulary interventions for adolescents with language disorder. Methods & Procedures: A systematic search of 14 databases and other sources yielded 1320 studies, of which 13 met inclusion criteria. Inclusion criteria were: intervention effectiveness studies with a focus on enhancing oral receptive and/or expressive vocabulary skills in the study's aims; participants in the age range 11;0–16;11 with receptive and/or expressive language difficulties of any aetiology. Main Contribution: There was a high degree of diversity between studies. Types of intervention included: semantic intervention (four studies); comparison of phonological versus semantic intervention (two); and combined phonological–semantic intervention (seven). The strongest evidence for effectiveness was found with a combined phonological–semantic approach. The evidence suggested a potential for all models of delivery to be helpful (individual, small group and whole class). Conclusions & Implications: Tentative evidence is emerging for the effectiveness of a phonological–semantic approach in enhancing the vocabulary skills of adolescents who have language disorder. Future research needs to refine and develop the methodologies used in this diverse group of studies in order to replicate their findings and to build consensus

    "First pain" in humans: convergent and specific forebrain responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brief heat stimuli that excite nociceptors innervated by finely myelinated (Aδ) fibers evoke an initial, sharp, well-localized pain ("first pain") that is distinguishable from the delayed, less intense, more prolonged dull pain attributed to nociceptors innervated by unmyelinated (C) fibers ("second pain"). In the present study, we address the question of whether a brief, noxious heat stimulus that excites cutaneous Aδ fibers activates a distinct set of forebrain structures preferentially in addition to those with similar responses to converging input from C fibers. Heat stimuli at two temperatures were applied to the dorsum of the left hand of healthy volunteers in a functional brain imaging (fMRI) paradigm and responses analyzed in a set of volumes of interest (VOI).</p> <p>Results</p> <p>Brief 41°C stimuli were painless and evoked only C fiber responses, but 51°C stimuli were at pain threshold and preferentially evoked Aδ fiber responses. Most VOI responded to both intensities of stimulation. However, within volumes of interest, a contrast analysis and comparison of BOLD response latencies showed that the bilateral anterior insulae, the contralateral hippocampus, and the ipsilateral posterior insula were preferentially activated by painful heat stimulation that excited Aδ fibers.</p> <p>Conclusions</p> <p>These findings show that two sets of forebrain structures mediate the initial sharp pain evoked by brief cutaneous heat stimulation: those responding preferentially to the brief stimulation of Aδ heat nociceptors and those with similar responses to converging inputs from the painless stimulation of C fibers. Our results suggest a unique and specific physiological basis, at the forebrain level, for the "first pain" sensation that has long been attributed to Aδ fiber stimulation and support the concept that both specific and convergent mechanisms act concurrently to mediate pain.</p
    corecore