19 research outputs found

    Biomarkers for prediction of mortality in left-sided infective endocarditis

    Get PDF
    Background: Evidence regarding biomarkers for risk prediction in patients with infective endocarditis (IE) is limited. We aimed to investigate the value of a panel of biomarkers for the prediction of in-hospital mortality in patients with IE. Methods: Between 2016 and 2018, consecutive IE patients admitted to the emergency department were prospectively included. Blood concentrations of nine biomarkers were measured at admission (D0) and on the seventh day (D7) of antibiotic therapy: C-reactive protein (CRP), sensitive troponin I (s-cTnI), procalcitonin, B-type natriuretic peptide (BNP), neutrophil gelatinase-associated lipocalin (NGAL), interleukin 6 (IL6), tumor necrosis factor α (TNF-α), proadrenomedullin, alpha-1-acid glycoprotein, and galectin 3. The primary endpoint was in-hospital mortality. Results: Among 97 patients, 56% underwent cardiac surgery, and in-hospital mortality was 27%. At admission, six biomarkers were independent predictors of in-hospital mortality: s-cTnI (OR 3.4; 95%CI 1.8–6.4; P < 0.001), BNP (OR 2.7; 95%CI 1.4–5.1; P = 0.002), IL-6 (OR 2.06; 95%CI 1.3–3.7; P = 0.019), procalcitonin (OR 1.9; 95%CI 1.1–3.2; P = 0.018), TNF-α (OR 1.8; 95%CI 1.1–2.9; P = 0.019), and CRP (OR 1.8; 95%CI 1.0–3.3; P = 0.037). At admission, S-cTnI provided the highest accuracy for predicting mortality (area under the ROC curve: s-cTnI 0.812, BNP 0.727, IL-6 0.734, procalcitonin 0.684, TNF-α 0.675, CRP 0.670). After 7 days of antibiotic therapy, BNP and inflammatory biomarkers improved their performance (s-cTnI 0.814, BNP 0.823, IL-6 0.695, procalcitonin 0.802, TNF-α 0.554, CRP 0.759). Conclusion: S-cTnI concentration measured at admission had the highest accuracy for mortality prediction in patients with IE

    Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular alterations occur frequently in T-ALL and the potential impact of those abnormalities on outcome is still controversial. The current study aimed to test whether <it>NOTCH1 </it>mutations and additional molecular abnormalities would impact T-ALL outcome in a series of 138 T-ALL paediatric cases.</p> <p>Methods</p> <p>T-ALL subtypes, status of <it>SIL-TAL1 </it>fusion, ectopic expression of <it>TLX3</it>, and mutations in <it>FBXW7</it>, <it>KRAS</it>, <it>PTEN </it>and <it>NOTCH1 </it>were assessed as overall survival (OS) and event-free survival (EFS) prognostic factors. OS and EFS were determined using the Kaplan-Meier method and compared using the log-rank test.</p> <p>Results</p> <p>The frequencies of mutations were 43.5% for <it>NOTCH1</it>, while <it>FBXW7</it>, <it>KRAS </it>and <it>PTEN </it>exhibited frequencies of 19.1%, 9.5% and 9.4%, respectively. In 78.3% of cases, the coexistence of <it>NOTCH1 </it>mutations and other molecular alterations was observed. In multivariate analysis no statistical association was revealed between <it>NOTCH1 </it>mutations and any other variable analyzed. The mean length of the follow-up was 68.4 months and the OS was 50.7%. <it>SIL-TAL1 </it>was identified as an adverse prognostic factor. <it>NOTCH1 </it>mutation status was not associated with outcome, while the presence of <it>NOTCH1 </it>complex mutations (indels) were associated with a longer overall survival (<it>p </it>= 0.031) than point mutations.</p> <p>Conclusion</p> <p><it>NOTCH1 </it>mutations alone or in combination with <it>FBXW7 </it>did not impact T-ALL prognosis. Nevertheless, complex <it>NOTCH1 </it>mutations appear to have a positive impact on OS and the <it>SIL-TAL1 </it>fusion was validated as a negative prognostic marker in our series of T-ALL.</p

    CRLF2 expression associates with ICN1 stabilization in T-cell acute lymphoblastic leukemia

    No full text
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy with few molecular alterations showing a consensual prognostic value. CRLF2 overexpression was recently identified in high-risk T-ALL patients. For these cases, no genomic abnormality was found to be associated with CRLF2 overexpression. IKZF1 has been recently shown to be a direct transcriptional regulator of CRLF2 expression. Moreover, it is known that NOTCH1 antagonizes IKZF1 in T-ALL. In light of these pieces of evidence, we reasoned that IKZF1 binding perturbation and CRLF2 upregulation could be associated in T-ALL. We evaluated two independent series of pediatric T-ALL cases (PHOP, n&#x2009;=&#x2009;57 and TARGET, n&#x2009;=&#x2009;264) for the presence of common T-ALL molecular abnormalities, such as NOTCH1/FBXW7 mutations. We also assessed CRLF2 and IKZF1 gene expression. CRLF2 overexpression was observed in 14% (PHOP) and 16% (TARGET) of T-ALL patients. No correlation was found between mRNA expression of CRLF2 and IKZF1 in both cohorts. Interestingly, we show that patients with mutations affecting NOTCH1-PEST domain and/or FBXW7 had higher CRLF2 expression (P&#x2009;=&#x2009;.04). In summary, we demonstrate for the first time that only mutations resulting in ICN1 (intracellular domain of NOTCH1) stabilization are associated with CRLF2 overexpression

    A novel PAX5 rearrangement in TCF3-PBX1 acute lymphoblastic leukemia: a case report

    No full text
    BACKGROUND: Chromosome translocations are a hallmark of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Additional genomic aberrations are also crucial in both BCP-ALL leukemogenesis and treatment management. Herein, we report the phenotypic and molecular cytogenetic characterization of an extremely rare case of BCP-ALL harboring two concomitant leukemia-associated chromosome translocations: t(1;19)(q23;q13.3) and t(9;17)(p13;q11.2). Of note, we described a new rearrangement between exon 6 of PAX5 and a 17q11.2 region, where intron 3 of SPECC1 is located. This rearrangement seems to disrupt PAX5 similarly to a PAX5 deletion. Furthermore, a distinct karyotype between diagnosis and relapse samples was observed, disclosing a complex clonal evolution during leukemia progression. CASE PRESENTATION: A 16-year-old boy was admitted febrile with abdominal and joint pain. At clinical investigation, he presented with anemia, splenomegaly, low white blood cell count and 92% lymphoblast. He was diagnosed with pre-B ALL and treated according to high risk GBTLI-ALL2009. Twelve months after complete remission, he developed a relapse in consequence of a high central nervous system and bone marrow infiltration, and unfortunately died. CONCLUSIONS: To our knowledge, this is the first report of a rearrangement between PAX5 and SPECC1. The presence of TCF3-PBX1 and PAX5-rearrangement at diagnosis and relapse indicates that both might have participated in the malignant transformation disease maintenance and dismal outcome.</p

    The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia

    No full text
    Single-cell genetics were used to interrogate clonal complexity and the sequence of mutational events in STIL-TAL1+ T-ALL. Single-cell multicolour FISH was used to demonstrate that the earliest detectable leukaemia subclone contained the STIL-TAL1 fusion and copy number loss of 9p21.3 (CDKN2A/CDKN2B locus), with other copy number alterations including loss of PTEN occurring as secondary subclonal events. In three cases, multiplex qPCR and phylogenetic analysis were used to produce branching evolutionary trees recapitulating the snapshot history of T-ALL evolution in this leukaemia subtype, which confirmed that mutations in key T-ALL drivers, including NOTCH1 and PTEN, were subclonal and reiterative in distinct subclones. Xenografting confirmed that self-renewing or propagating cells were genetically diverse. These data suggest that the STIL-TAL1 fusion is a likely founder or truncal event. Therapies targeting the TAL1 auto-regulatory complex are worthy of further investigation in T-ALL

    Implementation of a pharmacogenomic program in a Brazilian public institution

    No full text
    This narrative review describes implementation, current status and perspectives of a pharmacogenomic (PGx) program at the Brazilian National Cancer Institute (INCA), targeting the cancer chemotherapeutic drugs – fluoropyrimidines, irinotecan and thiopurines. This initiative, designed as a research project, was supported by a grant from the Brazilian Ministry of Health. A dedicated task force developed standard operational procedures from recruitment of patients to creating PGx reports with dosing recommendations, which were successfully applied to test 100 gastrointestinal cancer INCA outpatients and 162 acute lymphoblastic leukemia pediatric patients from INCA and seven other hospitals. The program has been subsequently expanded to include gastrointestinal cancer patients from three additional cancer treatment centers. We anticipate implementation of routine pre-emptive PGx testing at INCA but acknowledge challenges associated with this transition, such as continuous financing support, availability of trained personnel, adoption of the PGx-informed prescription by the clinical staff and, ultimately, evidence of cost–effectiveness

    A novel assay for the identification of NOTCH1 PEST domain mutations in chronic lymphocytic leukemia

    No full text
    Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions

    IKZF1 deletions with COBL breakpoints are not driven by RAG-mediated recombination events in acute lymphoblastic leukemia

    No full text
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination
    corecore