68 research outputs found

    Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    Get PDF
    Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.FAPESPFAPESP CInAPC

    Decay Properties of the Connectivity for Mixed Long Range Percolation Models on Zd\Z^d

    Full text link
    In this short note we consider mixed short-long range independent bond percolation models on Zk+d\Z^{k+d}. Let puvp_{uv} be the probability that the edge (u,v)(u,v) will be open. Allowing a x,yx,y-dependent length scale and using a multi-scale analysis due to Aizenman and Newman, we show that the long distance behavior of the connectivity τxy\tau_{xy} is governed by the probability pxyp_{xy}. The result holds up to the critical point.Comment: 6 page

    mu-Theraphotoxin-An1a: primary structure determination and assessment of the pharmacological activity of a promiscuous anti-insect toxin from the venom of the tarantula Acanthoscurria natalensis (Mygalomorphae, Theraphosidae)

    Get PDF
    Tarantulas are included in the mygalomorph spider family Theraphosidae. Although the pharmacological diversity of theraphosid toxins (theraphotoxins) is broad, studies dedicated to the characterization of biologically active molecules from the theraphosid genus Acanthoscurria have been restricted to the investigation of antimicrobial peptides and polyamines produced by the hemocytes of Acanthoscurria gomesiana. The present study reports the purification, primary structure determination and electrophysiological effects of an anti-insect toxin, named mu-theraphotoxin-An1a (mu-TRTX-An1a), from the venom of Acanthoscurria natalensis - a tarantula species occurring in the Brazilian biomes caatinga and cerrado. The analysis of the primary structure of mu-TRTX-An1a revealed the similarity of this toxin to theraphosid toxins bearing a huwentoxin-II-like fold. Electrophysiological experiments showed that mu-TRTX-An1a (100 nM) induces membrane depolarization, increases the spontaneous firing frequency and reduces spike amplitude of cockroach dorsal unpaired median (DUM) neurons. In addition, under voltage-clamp conditions, mu-TRTX-An1a (100 nM) only partially blocks voltage-dependent sodium current amplitudes in DUM neurons without any effect on their voltage dependence. This effect correlates well with the reduction of the spontaneous action potential amplitudes. Altogether, these last results suggest that mu-TRTX-An1a affects insect neuronal voltage-dependent sodium channels, which are among possible channels targeted by this promiscuous toxin
    corecore