9 research outputs found

    Multivariate Curve Resolution Of Ph Gradient Flow Injection Mixture Analysis With Correction Of The Schlieren Effect.

    Get PDF
    Multivariate curve resolution using alternating least squares (MCR-ALS) was used to quantify ascorbic (AA) and acetylsalicylic (ASA) acids in four pharmaceutical samples using a flow injection analysis (FIA) system with pH gradient and a diode array (DAD) spectrometer as a detector. Four different pharmaceutical drugs were analyzed, giving a data array of dimensions 51 x 291 x 61, corresponding respectively to number of samples, FIA times and spectral wavelengths. MCR-ALS was applied to these large data sets using different constraints to have optimal resolution and optimal quantitative estimations of the two analytes (AA and ASA). Since both analytes give an acid-basic pair of species contributing to the UV recorded signal, at least four components sholuld be proposed to model AA and ASA in synthetic mixture samples. Moreover, one additional component was needed to resolve accurately the Schlieren effect and another additional component was also needed to model the presence of possible interferences (like caffeine) in the commercial drugs tablets, giving therefore a total number of 6 independent components needed. The best quantification relative errors were around 2% compared to the reference values obtained by HPLC and by the oxidation-reduction titrimetric method, for ASA and AA respectively. In this work, the application of MCR-ALS allowed for the first time the full resolution of the FIA diffusion profile due to the Schlieren effect as an independent signal contribution, suggesting that the proposed MCR-ALS method allows for its accurate correction in FIA-DAD systems.133774-8

    Figures Of Merit For The Determination Of The Polymorphic Purity Of Carbamazepine By Infrared Spectroscopy And Multivariate Calibration.

    No full text
    Polymorphism is an important property in the quality control of pharmaceutical products. In this regard, partial least squares regression and the net analytical signal were used to build and validate a multivariate calibration model using diffuse reflectance infrared spectroscopy in the region of 900-1100 cm(-1) for the determination of the polymorphic purity of carbamazepine. Physical mixtures of the polymorphs were made by weight, from 80 to 100% (w/w) form III mixed with form I. Figures of merit, such as sensitivity, analytical sensitivity, selectivity, confidence limits, precision (mean, repeatability, intermediate), accuracy, and signal-to-noise ratio were calculated. Feasible results were obtained with maximum absolute error of 2% and an average error of 0.53%, indicating that the proposed methodology can be used by the pharmaceutical industry as an alternative to the X-ray diffraction (United States Pharmacopoeiamethod).932124-3

    Validation of models of multivariate calibration: an application in the determination of polymorphic purity of carbamazepine by near infrared spectroscopy

    No full text
    The application of analytical procedures based on multivariate calibration models has been limited in several areas due to requirements of validation and certification of the model. Procedures for validation are presented based on the determination of figures of merit, such as precision (mean, repeatability, intermediate), accuracy, sensitivity, analytical sensitivity, selectivity, signal-to-noise ratio and confidence intervals for PLS models. An example is discussed of a model for polymorphic purity control of carbamazepine by NIR diffuse reflectance spectroscopy. The results show that multivariate calibration models can be validated to fulfill the requirements imposed by industry and standardization agencies.1004101

    Variable Selection, Outlier Detection, And Figures Of Merit Estimation In A Partial Least-squares Regression Multivariate Calibration Model. A Case Study For The Determination Of Quality Parameters In The Alcohol Industry By Near-infrared Spectroscopy.

    No full text
    Practical implementation of multivariate calibration models has been limited in several areas due to the requirement of appropriate development and validation to prove their performance to standardization agencies. Herein, a detailed description of the application of multivariate calibration based on partial least-squares regression models (PLSR) for the determination of soluble solids (BRIX), polarizable sugars (POL), and reducing sugars (RS) in sugar cane juice, based on near infrared spectroscopy (NIR), for the alcohol industries is presented. The development of the models, including variable selection and outlier elimination, and their validation by determination of figures of merit, such as accuracy, precision, sensitivity, analytical sensitivity, prediction intervals, and limits of detection and quantification, are described for a representative data set of 1381 sugar cane samples. Values estimated by PLSR are compared with appropriate reference methods, where the results indicated that the PLSR models can be used in the alcohol industry as an alternative to refractometry and lead clarification before polarization measurements (standard methods for BRIX and POL, respectively). For RS, the results of a titration reference method were compared with the PLSR estimates and also with an estimate based on BRIX and POL values, as actually used in the alcohol industry. The PLSR method presented a better agreement with the titration method. However, the results indicated that the RS estimates from both PLSR and those based on the BRIX and POL values, actually used, should be improved to a safe determination of RS.558331-

    Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils

    No full text
    Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved

    Determination Of Pesticides And Metabolites In Wine By High Performance Liquid Chromatography And Second-order Calibration Methods.

    No full text
    The models parallel factor analysis (PARAFAC) and the recently introduced bilinear least squares (BLLS) were applied to develop second-order calibration methods to high performance liquid chromatography with diode array detection (HPLC-DAD) data, where overlap of interferences with the compounds of interest was observed, making the determination and resolution of the analytes possible. In this work, the simultaneous determination of five pesticides and two metabolites in wine samples by HPLC-DAD was performed, using the second-order advantage. The results of two chromatographic methods were compared, involving either isocratic or gradient elution. An appropriate preprocessing method was necessary to correct the effects of time shifts, baseline variations and background. BLLS presented results that were of the same quality as PARAFAC in five cases, but in two other situations only PARAFAC enabled analyte quantitation. Relative errors of prediction lower than 10% for all compounds were obtained, indicating that the methodology employing HLPC-DAD and second-order calibration can handle complex analytical systems.1148200-1
    corecore