10 research outputs found

    Forcing mechanisms behind variations in TOC concentration of lake waters Forcing mechanisms behind variations in total organic carbon (TOC) concentration of lake waters during the past eight centuries – palaeolimnological evidence from southern Sweden Forcing mechanisms behind variations in TOC concentration of lake waters

    Get PDF
    International audienceDecadal-scale variations in total organic carbon (TOC) concentration in lake water since AD 1200 in two small lakes in southern Sweden were reconstructed based on visible-near infrared spectroscopy (VNIRS) of their recent sediment successions. In order to assess the impacts of local land-use changes and regional variations in 5 sulphur deposition and climate on the inferred changes in TOC concentration, the same sediment records were subjected to multi-proxy palaeolimnological analyses. Changes in lake-water pH were inferred from diatom analysis, whereas pollen-based land-use reconstructions (Landscape Reconstruction Algorithm) together with geo-chemical records provided information on catchment-scale environmental changes, 10 and comparisons were made with available records of climate and population density. Our long-term reconstructions reveal that TOC concentrations were generally high prior to AD 1900, with second-order variations coupled mainly to changes in agricultural land-use intensity. The last century showed significant changes, and unusually low TOC concentrations were recorded in 1930–1990, followed by a recent increase. Vari-15 ations in sulphur emissions, with an increase in the early 1900s to a peak around AD 1980 and a subsequent decrease, were most likely the main driver of these dynamics, although processes related to the introduction of modern forestry and recent increases in precipitation and temperature may have contributed. The increase in lake-water TOC concentration from around AD 1980 may therefore reflect a recovery process. Given 20 that the effects of sulphate deposition now subside, other forcing mechanisms related to land management and climate change will possibly become the main drivers of TOC concentration changes in boreal lake waters in the future

    Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes

    Get PDF
    International audienceDecadal-scale variations in total organic carbon (TOC) concentration in lake water since AD 1200 in two small lakes in southern Sweden were reconstructed based on visible–near-infrared spectroscopy (VNIRS) of their recent sediment successions. In order to assess the impacts of local land-use changes, regional variations in sulfur, and nitrogen deposition and climate variations on the inferred changes in TOC concentration, the same sediment records were subjected to multi-proxy palaeolimnological analyses. Changes in lake-water pH were inferred from diatom analysis , whereas pollen-based land-use reconstructions (Landscape Reconstruction Algorithm) together with geochemical records provided information on catchment-scale environmental changes, and comparisons were made with available records of climate and population density. Our long-term reconstructions reveal that inferred lake-water TOC concentrations were generally high prior to AD 1900, with additional variability coupled mainly to changes in forest cover and agricultural land-use intensity. The last century showed significant changes, and unusually low TOC concentrations were inferred at AD 1930–1990, followed by a recent increase , largely consistent with monitoring data. Variations in sulfur emissions, with an increase in the early 1900s to a peak around AD 1980 and a subsequent decrease, were identified as an important driver of these dynamics at both sites, while processes related to the introduction of modern forestry and recent increases in precipitation and temperature may have contributed, but the effects differed between the sites. The increase in lake-water TOC concentration from around AD 1980 may therefore reflect a recovery process. Given that the effects of sulfur deposition now subside and that the recovery of lake-water TOC concentrations has reached pre-industrial levels, other forcing mechanisms related to land management and climate change may become the main drivers of TOC concentration changes in boreal lake waters in the future

    Two hundred years of land-use change in the South Swedish Uplands : comparison of historical map-based estimates with a pollen-based reconstruction using the landscape reconstruction algorithm

    Get PDF
    International audienceLong-term records of environmental history at decadal to millennial timescales enable an assessment of ecosystem variability and responses to past anthropogenic disturbances and are fundamental for the development of environmental management strategies. This study examines the local variability of land-use history in the South Swedish Uplands over the last 200 years based on pollen records from three lake-sediment successions. Temporal changes in the proportional cover of 14 plant taxa were quantified as percentages using the landscape reconstruction algorithm (LRA). The LRA-based estimates of the extent of four land-use categories (cropland, meadows/grassland, wetland, outland/woodland) were compared to corresponding estimates based on historical maps and aerial photographs from AD 1769–1823, 1837–1895, 1946 and 2005. Although the LRA approach tends to overestimate grassland cover by 10–30 % for the two earliest time periods, the reconstructed vegetation composition is generally in good agreement with estimates based on the historical records. Subsequently, the LRA approach was used to reconstruct the 200-year history of local land-use dynamics at 20-year intervals around two small lakes. The qualitative assessment of difference approach , which requires fewer assumptions and parameters than LRA for objective evaluation of between-site differences in plant abundances, provides consistent results in general. Significant differences exist in the land-use history between the sites. Local catchment characteristics, such as soil conditions and wetland cover, appear important for the development of human impact on the landscape. Quantifi-cations of past vegetation dynamics provide information on the amplitude, frequency and duration of the land-use changes and their effects on terrestrial and aquatic ecosystems , and should be taken into account when nature conservation strategies are developed

    The effect of local land-use changes on floristic diversity during the past 1000 years in southern Sweden

    No full text
    International audienceThe relationship between land-use and floristic diversity in the landscape, for the last millennia, is analysed from two small lakes in southern Sweden. Pollen analysis and the Local Vegetation Estimates (LOVE) model are used to quantify land-cover at local scales with 100-year time windows. Floristic richness is estimated using palynological richness, and we introduce LOVE-based evenness as a proxy for floristic evenness on a local scale based on the LOVE output. The results reveal a dynamic land-use pattern, with agricultural expansion during the 13th century, a partly abandoned landscape around AD 1400, re-establishment during the 15th–17th centuries and a transition from traditional to modern land-use during the 20th century. We suggest that the more heterogeneous landscape and the more dynamic land-use during the 13th–19th centuries were of substantial importance for achieving the high floristic diversity that characterises the traditional landscape. Pollen-based studies of this type are helpful in identifying landscape characteristics and landuse practices that are important for floristic diversity and may therefore guide the development of ecosystem management strategies aiming at mitigating the on-going loss of species seen in the landscape of southern Sweden and many other regions worldwide

    Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges

    No full text
    corecore