9,444 research outputs found

    Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity

    Full text link
    A stability criterion is derived in general relativity for self-similar solutions with a scalar field and those with a stiff fluid, which is a perfect fluid with the equation of state P=ρP=\rho. A wide class of self-similar solutions turn out to be unstable against kink mode perturbation. According to the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be a critical solution for the spherical collapse of a stiff fluid if we allow sufficiently small discontinuity in the density gradient field in the initial data sets. The self-similar scalar-field solution, which was recently found numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19} 6359), is also unstable. Both the flat Friedmann universe with a scalar field and that with a stiff fluid suffer from kink instability at the particle horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity, typos correcte

    Jamming transitions in a schematic model of suspension rheology

    Full text link
    We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a nonergodic, jammed state, showing zero flow rate in an interval of applied stress. Although the jammed state is a glass, we predict that jamming transitions have an analytical structure distinct from that of the conventional mode coupling glass transition. The static jamming transition we discuss is also distinct from hydrodynamic shear thickening.Comment: 7 pages; 3 figures; improved version with added references. Accepted for publication in Europhysics Letter

    Fractal to Nonfractal Phase Transition in the Dielectric Breakdown Model

    Full text link
    A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent RG prediction of an upper critical ηc=4\eta_c=4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.Comment: 5 pages, 7 figures; corrections to scaling include

    Gauge symmetry breaking on orbifolds

    Full text link
    We discuss a new method for gauge symmetry breaking in theories with one extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields and their derivatives can jump at the orbifold fixed points, we can implement a generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show that our model with discontinuous fields is equivalent to another with continuous but non periodic fields; in our scheme localized lagrangian terms for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond, "Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar 2002. Minor changes, one reference adde

    Magnitude and Timing of Extreme Continental Extension, Central Death Valley Region, California

    Get PDF
    New geochronologic, stratigraphic, and sedimentologic data indicate extreme late Cenozoic extension across the central Death Valley region (fig. 9). ^(40)Ar/^(39)Ar geochronology of sanidine from tuffs intercalated with steeply tilted sediments along the eastern margin of the central Death Valley region, including sections near Chicago Pass and at Eagle Mountain, indicates deposition from approximately 15 to 11.7 Ma (fig. 10). Clasts of marble, orthoquartzite, fusilinid limestone, and leucogabbro are prominent at both locations. The only known source in the Death Valley region for this clast assemblage is in the southern Cotton wood Mountains, more than 100 km away on the western flank of the Death Valley region. U/Pb geochronology of baddeleyite confirms that leucogabbro clasts from both sections have the same igneous crystallization age (~180 Ma) as the leucogabbroic phase of the Hunter Mountain batholith, in the southern Cottonwood Mountains. The sediments include debris flows, flood deposits, and monolithic boulder beds of large leucogabbro clasts (>1 m), suggesting deposition in an alluvial fan setting. Sedimentary transport of these deposits is unlikely to have exceeded 20 km. Restoration of the Eagle Mountain and Chicago Valley deposits to a position just east of the southern Cotton wood Mountains results in approximate net translations of 80 km and 104 km, respectively, at an azimuth of N. 67° W. (fig. 11). This suggests overall extension magnitudes of at least 500 percent across the Death Valley region since 12 Ma, with strain rates that approached 10^(-14)/s during maximum extension. These results support previous reconstructions based on isopachs and Mesozoic structural features. (See, for example, Wernicke and others, 1988.

    The central density of a neutron star is unaffected by a binary companion at linear order in Ό/R\mu/R

    Get PDF
    Recent numerical work by Wilson, Mathews, and Marronetti [J. R. Wilson, G. J. Mathews and P. Marronetti, Phys. Rev. D 54, 1317 (1996)] on the coalescence of massive binary neutron stars shows a striking instability as the stars come close together: Each star's central density increases by an amount proportional to 1/(orbital radius). This overwhelms any stabilizing effects of tidal coupling [which are proportional to 1/(orbital radius)^6] and causes the stars to collapse before they merge. Since the claimed increase of density scales with the stars' mass, it should also show up in a perturbation limit where a point particle of mass Ό\mu orbits a neutron star. We prove analytically that this does not happen; the neutron star's central density is unaffected by the companion's presence to linear order in Ό/R\mu/R. We show, further, that the density increase observed by Wilson et. al. could arise as a consequence of not faithfully maintaining boundary conditions.Comment: 3 pages, REVTeX, no figures, submitted to Phys Rev D as a Rapid Communicatio

    Matching of the continuous gravitational wave in an all sky search

    Get PDF
    We investigate the matching of continuous gravitational wave (CGW) signals in an all sky search with reference to Earth based laser interferometric detectors. We consider the source location as the parameters of the signal manifold and templates corresponding to different source locations. It has been found that the matching of signals from locations in the sky that differ in their co-latitude and longitude by π\pi radians decreases with source frequency. We have also made an analysis with the other parameters affecting the symmetries. We observe that it may not be relevant to take care of the symmetries in the sky locations for the search of CGW from the output of LIGO-I, GEO600 and TAMA detectors.Comment: 16 pages, 7 figures, 3 Tables, To appear in Int. J. Mod. Phys.

    Magnetic Response of a Single, Isolated Gold Loop

    Get PDF
    Measurements have been made of the low-temperature magnetic response of single, isolated, micron-size Au loops. The magnetic response is found to contain a component which oscillates with the applied magnetic flux with a fundamental period of Ω0=h/e. The amplitude of the oscillatory component corresponds to a persistent current of ≃(0.3–2.0)evF/L, 1 to 2 orders of magnitude larger than predicted by current theories
    • 

    corecore