227 research outputs found

    Two-Grating Talbot Bands Spectral Domain Interferometer

    Get PDF
    A configuration for Talbot bands is presented, where two tilted gratings replace the splitter normally used for recombining the signals from the two interferometer arms. The two optical beams from the interferometer are launched by two fiber leads tightly brought together in the front focal plane of a collimating lens. As the tips of the two fibers are slightly off-axis, the emergent beams after the collimating lens are not parallel. In combination with the two tilted gratings, the non parallel launching of the two beams leads to total elimination of mirror terms even when the two beams overlap on either grating. The effects of several geometrical parameters on the visibility performance versus optical path difference between the two arm lengths of the interferometer are evaluated

    Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror

    Get PDF
    We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented. © 2015 Society of Photo-Optical Instrumentation Engineers

    Master/slave based optical coherence tomography for in-vivo, real-time, long axial imaging range of the anterior segment

    Get PDF
    In this report, we demonstrate that in a coherence revival (CR) based swept source optical coherence tomography (SS-OCT) set-up, real-time cross-sectional long-range images can be produced via the Master Slave (MS) method. The total tolerance of the MS method to nonlinear tuning, to dispersion in the interferometer and to dispersion due to the laser cavity, makes the MS ideally suited to the practice of coherence revival. In addition, enhanced versatility is allowed by the MS method in displaying shorter axial range images than that determined by the digital sampling of the data. This brings an immediate improvement in the speed of displaying cross-sectional images at high rates without the need of extra hardware such as graphics processing units or field programmable gate arrays. The long axial range of the coherence revival regime is proven with images of the anterior segment of healthy human eye

    Master/slave: the ideal tool for coherence revival based optical coherence tomography imaging instruments

    Get PDF
    In this communication, we present the utility of the Master/Slave (MS) method in combination with the coherence revival technique to perform full axial range Optical Coherence Tomography (OCT). The MS method eliminates two major drawbacks of the conventional Fourier Transformed (FT) based OCT technology when applied to the coherence revival technique: the need of data re-sampling as well as the need to compensate for unbalanced dispersion in the interferometer

    Complex Master Slave Interferometry

    Get PDF
    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution

    Parallel Approaches to Digital Signal Processing Algorithms with Applications in Medical Imaging

    Get PDF
    This paper reviews established and emerging parallel technologies, which are employed to enhance the performance of digital signal processing algorithms. Special attention is paid to algorithms with applications in medical imaging. Parallel implementations of some of the most commonly used algorithms, such as Fourier transforms, convolution and cross-correlation are discussed. Parallel optimization of a newly introduced method in optical coherence tomography is presented. Its performance, in terms of latency, is presented and discussed

    Anti-Spoof Reliable Biometry of Fingerprints Using En-Face Optical Coherence Tomography

    Get PDF
    Optical coherence tomography (OCT) is a relatively new imaging technology which can produce high-reso- lution images of three-dimensional structures. OCT has been mainly used for medical applications such as for ophthalmology and dermatology. In this study we demonstrate its capability in providing much more re- liable biometry identification of fingerprints than conventional methods. We prove that OCT can serve se- cure control of genuine fingerprints as it can detect if extra layers are placed above the finger. This can pre- vent with a high probability, intruders to a secure area trying to foul standard systems based on imaging the finger surface. En-Face OCT method is employed and recommended for its capability of providing not only the axial succession of layers in depth, but the en-face image that allows the traditional pattern identification. Another reason for using such OCT technology is that it is compatible with dynamic focus and therefore can provide enhanced transversal resolution and sensitivity. Two En-Face OCT systems are used to evaluate the need for high resolution and conclusions are drawn in terms of the most potential commercial route to ex- ploitation

    Polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Get PDF
    In this manuscript we communicate a theoretical study on a plug-in optical module to be used within a Fourier-domain optical coherence tomography system (FD-OCT). The module can be inserted between the object under investigation and any single-mode fiber based FD-OCT imaging instrument, enabling the latter to carry out polarization measurements on the former. Similarly to our previous communication this is an active module which requires two sequential steps to perform a polarization measurement. Alternating between the two steps is achieved by changing the value of the retardance produced by two electro-optic polarization modulators, which together behave as a polarization state rotator. By combining the rotation of the polarization state with a projection against a linear polarizer it is possible to ensure that the polarization measurements are free from any undesirable polarization effects caused by the birefringence in the collecting fiber and diattenuation in the fiber-based couplers employed in the system. Unlike our previous work, though, this module adopts an in-line configuration, employing a Faraday rotator to ensure a non-reciprocal behavior between the forward and backward propagation paths

    Full-Field Swept Source Master-Slave Optical Coherence Tomography

    Get PDF
    We apply the principle of master-slave (MS) interferometry to a full-field swept source optical coherence tomography (OCT) setup equipped with a fast 2-D camera. MS interferometry does not involve Fourier transformations and, therefore, eliminates the need for spectrum data resampling required by the conventional spectral domain OCT. Using this method in a full-field OCT setup, en face images are acquired in vivo from finger skin, Drosophila melanogaster larvae, and pupae, with no spectrum resampling and no mechanical scanning. The signal processing is based on a comparison operation of the shapes of channeled spectra for each camera pixel, with a set of reference signals (masks). In this way, en face OCT images can be obtained with no need for the volumetric assembly and software cutting the en face images from an image volume, which are required by the conventional spectral domain OCT method. We demonstrate that the sensitivity and axial resolution of the MS method in a full-field swept source OCT setup are similar to the values obtained using the conventional Fourier-transformation-based swept source OCT method in a full-field setup. Multiple en face images can be produced in parallel by using multiple stored shapes of channeled spectra for the depths of interest. The full-field MS-OCT method presented here opens the possibility of parallel processing for all image points in a 3-D volume of the object
    • …
    corecore