706 research outputs found

    Extensions of the space trajectories error analysis programs

    Get PDF
    A generalized covariance analysis technique which permits the study of the sensitivity of linear estimation algorithms to errors in a priori statistics has been developed and programed. Several sample cases are presented to illustrate the use of this technique. Modifications to the Simulated Trajectories Error Analysis Program (STEAP) to enable targeting a multiprobe mission of the Planetary Explorer type are discussed. The logic for the mini-probe targeting is presented. Finally, the initial phases of the conversion of the Viking mission Lander Trajectory Reconstruction (LTR) program for use on Venus missions is discussed. An integrator instability problem is discussed and a solution proposed

    Lander Trajectory Reconstruction computer program

    Get PDF
    The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process

    X 1908+075: An X-ray Binary with a 4.4 day Period

    Get PDF
    X 1908+075 is an optically unidentified and highly absorbed X-ray source that appears in early surveys such as Uhuru, OSO-7, Ariel V, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range of 2-12 mCrab at 2-10 keV, and the position was localized to ~ 0.5 degrees. We use the Rossi X-ray Timing Explorer (RXTE) All Sky Monitor (ASM) to confirm our expectation that a particular Einstein IPC detection (1E 1908.4+0730) provides the correct position for X 1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~ 8 mCrab (1.5-12 keV) over a 3 year interval beginning in 1996 February. Furthermore, we detect a period of 4.400 +- 0.001 days with a false alarm probability < 1.0e-7 . The folded light curve is roughly sinusoidal, with an amplitude that is 22 % of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X 1908+075 is an X-ray binary with a high mass companion star.Comment: 6 pages, two-column,"emulateapj" style, submitted to Ap

    Highlights of RXTE Studies of Compact Objects after ~5 Years

    Get PDF
    Observations with the Rossi X-ray Timing Explorer (RXTE) have led to fundamental progress in the study of compact objects, in particular neutron stars and black holes. In this paper we present briefly some highlights from ~5 years of RXTE operations.Comment: Proceedings of the Ninth Marcel Grossman Meeting, July 2000, eds., Vahe Gurzadyan, Robert Jantzen and Remo Ruffini, World Scientific, Singapore (in press). 15 pages, 12 figure

    The Weak Blue Bump of H2106-099 and AGN De-Reddening

    Get PDF
    We present multi-frequency spectra of the Seyfert 1 galaxy H2106-099, from radio to hard X-rays, spanning over a decade of observations. The hard X-ray (2-20 keV) spectrum measured with Ginga had a Log slope of -0.80 +/- 0.02 on 1988 May 18 and -1.02 +/- 0.10 on 1988 May 22 / 23 UT, with no observed flux changes. Other measurements showed variability and unusual spectral features: The V band flux changed by a factor of 1.8 (> 10 sigma) in six weeks. Only moderate optical Fe II emission is present, but strong [FeVII] and [Fe X] lines are present in some epochs. The Balmer lines show > 25% variations in flux relative to the mean, and He I changed by more than 100% relative to the mean in <~ six years. The most surprising finds came from the composite UV through near-IR spectrum: If the spectrum is de-reddened by the galactic extinction value (from 21 cm observations), a residual 2175 Angstrom absorption feature is present. Additional de-reddening to correct the feature yields E(B-V)=0.07 mag due to material outside our galaxy, most probably associated with the AGN or its host galaxy. No other clear indications of reddening are observed in this object, suggesting that blue bump strength measurements in low and intermediate red-shift AGN could be incorrect if derived without UV observations of the region near 2175 Angstrom in the AGN frame. After all reddening corrections are performed, the log slope of H2106-099 from the near IR (~12500 Angstrom) to the UV (~1400 Angstrom), -0.94 +/- 0.05, is steep compared to other AGN, suggesting that the blue bump in this object is intrinsically weak. Weak blue bumps are, therefore, not always an artifact caused by reddening.Comment: Three parts: A. 33 pages text, B. one landscape table, C. 8 figure

    RXTE confirmation of the intermediate polar status of IGR J15094-6649

    Get PDF
    Aims. To establish the X-ray properties of the intermediate polar candidate IGR J15094-6649 and therefore confirm its inclusion into the class. Methods. 42 856 s of X-ray data from RXTE was analysed. Frequency analysis was used to constrain temporal variations and spectral analysis used to characterise the emission and absorption properties. Results. A spin period of 809.7+-0.6 s is present, revealed as a complex pulse profile whose modulation depth decreases with increasing X-ray energy. The spectrum is well fitted by either a 19+-4 keV Bremsstrahlung or Gamma=1.8+-0.1 power law, with an iron emission line feature and significant absorption in each case. Conclusions. IGR J15094-6649 is confirmed to be an intermediate polar.Comment: 3 pages, 5 figures. Submitted to A&

    Cessation of X-ray Pulsation of GX 1+4

    Get PDF
    We report results from our weekly monitoring campaign on the X-ray pulsar GX 1+4 with the {\em Rossi X-ray Timing Explorer} satellite. The spin-down trend of GX 1+4 was continuing, with the pulsar being at its longest period ever measured (about 138.7 s). At the late stage of the campaign, the source entered an extended faint state, when its X-ray (2-60 keV) flux decreased significantly to an average level of 3×1010ergscm2s1\sim 3 \times 10^{-10} ergs cm^{-2} s^{-1}. It was highly variable in the faint state; the flux dropped to as low as 3×1011ergscm2s1\sim 3 \times 10^{-11} ergs cm^{-2} s^{-1}. In several observations during this period, the X-ray pulsation became undetectable. We can, therefore, conclude conservatively that the pulsed fraction, which is normally \gtrsim 70% (peak-to-peak), must have decreased drastically in those cases. This is very similar to what was observed of GX 1+4 in 1996 when it became similarly faint in X-ray. In fact, the flux at which the cessation of X-ray pulsation first occurred is nearly the same as it was in 1996. We suggest that we have, once again, observed the propeller effect in GX 1+4, a phenomenon that is predicted by theoretical models of accreting X-ray pulsars.Comment: 13 pages, 9 figures (available at http://www.physics.purdue.edu/~cui/ftp/cuifigs.tar.gz). To appear in Ap

    Relativistic Iron Line Emission from the Neutron Star Low-mass X-ray Binary 4U 1636-536

    Full text link
    We present an analysis of XMM-Newton and RXTE data from three observations of the neutron star LMXB 4U 1636-536. The X-ray spectra show clear evidence of a broad, asymmetric iron emission line extending over the energy range 4-9 keV. The line profile is consistent with relativistically broadened Fe K-alpha emission from the inner accretion disk. The Fe K-alpha line in 4U 1636-536 is considerably broader than the asymmetric iron lines recently found in other neutron star LMXBs, which indicates a high disk inclination. We find evidence that the broad iron line feature is a combination of several K-alpha lines from iron in different ionization states.Comment: 7 pages, 2 figures, Published in the Astrophysical Journa

    On the Spin History of the X-ray Pulsar in Kes 73: Further Evidence For an Utramagnetized Neutron Star

    Get PDF
    In previous papers, we presented the discovery of a 12-s X-ray pulsar in the supernova remnant Kes 73, providing the first direct evidence for an ultramagnetized neutron star, a magnetar, with an equivalent dipole field of nearly twenty times the quantum critical magnetic field. Our conclusions were based on two epochs of measurement of the spin, along with an age estimate of the host supernova remnant. Herein, we present a spin chronology of the pulsar using additional GINGA, ASCA, XTE, & SAX datasets spanning over a decade. Timing and spectral analysis confirms our initial results and severely limit an accretion origin for the observed flux. Over the 10 year baseline, the pulsar is found to undergo a rapid, constant spindown, while maintaining a steady flux and an invariant pulse profile. Within the measurement uncertainties, no systematic departures from a linear spin-down are found - departures as in the case of glitches or simply stochastic fluctuations in the pulse times-of-arrival (e.g. red timing noise). We suggest that this pulsar is akin to the soft gamma-ray repeaters, however, it is remarkably stable and has yet to display similar outbursts; future gamma-ray activity from this object is likely.Comment: 6 pages with 3 embedded figures, LaTex, emulateapj.sty. Submitted to the ApJ Letter

    An X-Ray Dip in the X-Ray Transient 4U 1630-47

    Full text link
    An x-ray dip was observed during a 1996 Rossi X-Ray Timing Explorer observation of the recurrent x-ray transient 4U 1630-47. During the dip, the 2-60 keV x-ray flux drops by a factor of about three, and, at the lowest point of the dip, the x-ray spectrum is considerably softer than at non-dip times. We find that the 4U 1630-47 dip is best explained by absorption of the inner part of an accretion disk, while the outer part of the disk is unaffected. The spectral evolution during the dip is adequately described by the variation of a single parameter, the column density obscuring the inner disk.Comment: 13 pages, 4 figures, Accepted for publication in Ap
    corecore