11,282 research outputs found

    Are Chromospheric Nanoflares a Primary Source of Coronal Plasma?

    Full text link
    It has been suggested that the hot plasma of the solar corona comes primarily from impulsive heating events, or nanoflares, that occur in the lower atmosphere, either in the upper part of the ordinary chromosphere or at the tips of type II spicules. We test this idea with a series of hydrodynamic simulations. We find that synthetic Fe XII (195) and Fe XIV (274) line profiles generated from the simulations disagree dramatically with actual observations. The integrated line intensities are much too faint; the blue shifts are much too fast; the blue-red asymmetries are much too large; and the emission is confined to low altitudes. We conclude that chromospheric nanoflares are not a primary source of hot coronal plasma. Such events may play an important role in producing the chromosphere and powering its intense radiation, but they do not, in general, raise the temperature of the plasma to coronal values. Those cases where coronal temperatures are reached must be relatively uncommon. The observed profiles of Fe XII and Fe XIV come primarily from plasma that is heated in the corona itself, either by coronal nanoflares or a quasi-steady coronal heating process. Chromospheric nanoflares might play a role in generating waves that provide this coronal heating.Comment: 14 pages, 6 figures, accepted by Astrophysical Journa

    The Cooling of Coronal Plasmas. iv: Catastrophic Cooling of Loops

    Get PDF
    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling (Reale and Landi, 2012) is due to the inability of a loop to sustain radiative / enthalpy cooling below a critical temperature, which can be > 1 MK in flares, 0.5 - 1 MK in active regions and 0.1 MK in long tenuous loops. Catastrophic cooling is characterised by a rapid fall in coronal temperature while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect limits very considerably the lifetime of coronal plasmas below the critical temperature

    Combination of molecular similarity measures using data fusion

    Get PDF
    Many different measures of structural similarity have been suggested for matching chemical structures, each such measure focusing upon some particular type of molecular characteristic. The multi-faceted nature of biological activity suggests that an appropriate similarity measure should encompass many different types of characteristic, and this article discusses the use of data fusion methods to combine the results of searches based on multiple similarity measures. Experiments with several different types of dataset and activity suggest that data fusion provides a simple, but effective, approach to the combination of individual similarity measures. The best results were generally obtained with a fusion rule that sums the rank positions achieved by each molecule in searches using individual measures

    Diagnosing the time-dependence of active region core heating from the emission measure: I. Low-frequency nanoflares

    Get PDF
    Observational measurements of active region emission measures contain clues to the time-dependence of the underlying heating mechanism. A strongly non-linear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly non-linear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called {\it low-frequency} nanoflare heating and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope α\alpha of the emission measure distribution EM(T)TαEM(T) \propto T^\alpha. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm3^{-3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops
    corecore