21 research outputs found

    Pesticide use and opportunities of exposure among farmers and their families: cross-sectional studies 1998-2006 from Hebron governorate, occupied Palestinian territory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adverse health effects caused by pesticide exposure have been reported in occupied Palestinian territory and the world at large. The objective of this paper is to compare patterns of pesticide use in Beit-U'mmar village, West Bank, between 1998 and 2006.</p> <p>Methods</p> <p>We studied two populations in Beit-U'mmar village, comprised of: 1) 61 male farmers and their wives in 1998 and 2) 250 male farmers in 2006. Both populations completed a structured interview, which included questions about socio-demographic factors, types of farming tasks, as well as compounds, quantities, and handling of pesticides. Using the 1998 population as a reference, we applied generalized linear regression models (GLM) and 95% confidence intervals (CI) in order to estimate prevalence differences (PD) between the two populations.</p> <p>Results</p> <p>In 1998, farmers used 47 formulated pesticides on their crops. In 2006, 16 of these pesticides were still in use, including five internationally banned compounds. There were positive changes with less use of large quantities of pesticides (>40 units/year) (PD -51; CI -0.60, -0.43), in applying the recommended dosage of pesticides (PD +0.57; CI +0.48, +0.68) and complying with the safety period (PD +0.89; CI+0.83, +0.95). Changes also included farmers' habits while applying pesticides, such as less smoking (PD -0.20; CI-0.34, -0.07) and eating at the work place (PD -0.33; CI-0.47, -0.19). No significant changes were found from 1998 to 2006 regarding use of personal protective equipment, pesticide storage, farmers' habits after applying pesticides, and in using some highly hazardous pesticides.</p> <p>Conclusions</p> <p>The results were based on two cross-sectional surveys and should be interpreted with caution due to potential validity problems. The results of the study suggest some positive changes in the handling of pesticides amongst participants in 2006, which could be due to different policy interventions and regulations that were implemented after 1998. However, farm workers in Beit -U'mmar village are still at risk of health effects because of ongoing exposure to pesticides. To the best of our knowledge, no studies on long-term changes in pesticide use have been reported from developing countries.</p

    Applicability of non-invasively collected matrices for human biomonitoring

    Get PDF
    With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives

    Higher measured moisture in California homes with qualitative evidence of dampness.

    No full text
    Relationships between measured moisture and qualitative dampness indicators (mold odor, visible mold, visible water damage, or peeling paint) were evaluated using data collected from California homes in a prospective birth cohort study when the infants were 6 or 12&nbsp;months of age (737 home visits). For repeated visits, agreement between observation of the presence/absence of each qualitative indicator at both visits was high (71-87%, P&nbsp;&lt;&nbsp;0.0001). Among individual indicators, musty odor and visible mold were most strongly correlated with elevated moisture readings. Measured moisture differed significantly between repeated visits in opposite seasons (P&nbsp;&lt;&nbsp;0.0001), and dampness increased with the number of indicators in a home. Linear mixed-effect models showed that 10-unit increases in maximum measured moisture were associated with the presence of 0.5 additional dampness indicators (P&nbsp;&lt;&nbsp;0.001). Bedroom (BR) walls were damper than living room (LR) walls in the same homes (P&nbsp;&lt;&nbsp;0.0001), although both average and maximum readings were positively correlated across room type (r&nbsp;=&nbsp;0.75 and 0.67, respectively, both P&nbsp;&lt;&nbsp;0.0001). Exterior walls were significantly damper than interior walls (P&nbsp;&lt;&nbsp;0.0001 in both LRs and BRs), but no differences were observed between maximum wall readings and measurements at either window corners or sites of suspected dampness

    Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development.

    No full text
    UnlabelledDampness and visible mold in homes are associated with asthma development, but causal mechanisms remain unclear. The goal of this research was to explore associations among measured dampness, fungal exposure, and childhood asthma development without the bias of culture-based microbial analysis. In the low-income, Latino CHAMACOS birth cohort, house dust was collected at age 12 months, and asthma status was determined at age 7 years.The current analysis included 13 asthma cases and 28 controls. Next-generation DNA sequencing methods quantified fungal taxa and diversity. Lower fungal diversity (number of fungal operational taxonomic units) was significantly associated with increased risk of asthma development: unadjusted odds ratio(OR) 4.80 (95% confidence interval (CI) 1.04–22.1). Control for potential confounders strengthened this relationship. Decreased diversity within the genus Cryptococcus was significantly associated with increased asthma risk (OR 21.0, 95% CI 2.16–204). No fungal taxon (species, genus, class) was significantly positively associated with asthma development, and one was significantly negatively associated. Elevated moisture was associated with increased fungal diversity, and moisture/mold indicators were associated with four fungal taxa. Next-generation DNA sequencing provided comprehensive estimates of fungal identity and diversity, demonstrating significant associations between low fungal diversity and childhood asthma development in this community.Practical implicationsEarly life exposure to low fungal diversity in house dust was associated with increased risk for later asthma developmen tin this low-income, immigrant community. No individual fungal taxon (species, genus, or class) was associated with asthma development, although exposure to low diversity within the genus Cryptococcus was associated with asthma development. Future asthma development studies should incorporate fungal diversity measurements, in addition to measuring individual fungal taxa. These results represent a step toward identifying the aspect(s) of indoor microbial populations that are associated with asthma development and suggest that understanding the factors that control diversity in the indoor environment may lead to public health recommendations for asthma prevention in the future

    Elemental Sulfur Use and Associations with Pediatric Lung Function and Respiratory Symptoms in an Agricultural Community (California, USA)

    No full text
    BackgroundElemental sulfur, "the oldest of all pesticides," is the most heavily used agricultural pesticide in California and Europe. Sulfur is considered relatively safe and is used in both conventional and organic farming systems. Adverse respiratory effects have been reported in applicators and animals, but the effect on residential populations, and especially on children living in proximity to fields treated with elemental sulfur, is not known.ObjectivesWe evaluated associations between residential proximity to elemental sulfur applications and respiratory symptoms and spirometry of children living in an agricultural community.MethodsParticipants were enrolled in the CHAMACOS longitudinal birth cohort. We collected respiratory symptomatology for 347 children at 7 y of age and measured spirometry on a subset of 279. Of these, estimations of proximity to sulfur application and relevant covariate data were available for 237 and 205 children for whom we had symptomatology information and FEV1 measurements, respectively. Data from the California Pesticide Use Reporting System were used to estimate the amount of elemental sulfur applied within 0.5, 1, and 3km of a child's residence during the week, month, and 12 mo prior to pulmonary evaluation. Regression models controlled for maternal smoking during pregnancy; season of birth; PM2.5 (particulate matter ≤2.5mm in aerodynamic diameter); breast feeding duration; child's sex, age, and height; technician; and other covariates.ResultsAdverse associations with respiratory outcomes were found for sulfur applications within 0.5- and 1-km radii. Specifically, asthma medication usage and respiratory symptoms increased [OR=3.51; 95% confidence interval (CI): 1.50, 8.23, p=0.004; OR=2.09; 95% CI: 1.27, 3.46, p=0.004, respectively] and FEV1 decreased (β=−0.143; 95% CI: −0.248, −0.039, p=0.008) per 10-fold increase in the estimated amount of sulfur used within 1 km of child residence during the year prior to pulmonary evaluation.ConclusionsThis study suggests that elemental sulfur use, allowed in both organic and conventional farming, in close proximity to residential areas, may adversely affect children's respiratory health. https://doi.org/10.1289/EHP528
    corecore