5,089 research outputs found

    The Proto-Mixteco kinship system

    Get PDF
    A tentative reconstruction of the Proto-Mixtec kinship system based on a comparison of data from four Mixtec variants

    A bibliography of Siouan languages

    Get PDF

    A limitation of Markov representation for stationary processes

    Get PDF
    AbstractThe existence of a representation of a stationary process as an instantaneous function of a real, irreducible Markov chain (Harris chain) imposes important restrictions on the distribution of the process. We construct a countably-valued stationary process with a very strong mixing property for which such a representation does not exist

    A Simulation and Diagnostic Study of Water Vapor Image Dry Bands

    Get PDF
    A Limited Area Mesoscale Prediction System (LAMPS) model simulation and special 3-hour radiosonde dataset are used to investigate warm (dry) bands in 6,7 μm water vapor satellite imagery on 6–7 March 1982. The purpose is to reveal processes resulting in the formation and evolution of the dry features that appear as curving dark streaks in the imagery. Model soundings are input to a radiative transfer algorithm to generate synthetic 6.7 μm equivalent blackbody temperatures (TB) which are compared with those from the Visible infrared Spin Scan Radiometer Atmospheric Sounder aboard the Geostationary Operational Environmental Satellite. Simulated and radiosonde-derived vertical velocity and humidity also are compared with the images. Finally, trajectories are calculated from both radiosonde data and LAMPS output. The model reproduces major characteristics of the observed TB field. A “development” dry image feature occurs in conjunction with an upper level shortwave trough, and an “advective” feature is associated with a polar jet streak. Both model and observed TB features are associated with vorticity maxima. The development feature forms as moisture gradients are enhanced by differential subsidence early in the study period. Horizontal wind shear then narrows the incipient dry area into its streak-like shape. Trajectories reveal that air parcels ending in the development streak move with it, in northwesterly, subsiding flow throughout the study period. Near the leading edge of the streak, ahead of the short-wave trough, flow is southwesterly and ascending. Air parcels in the advective image feature sink in the wake of the vorticity maximum, move through it in the jet flow, and finally ascend ahead of it. Thus, warm TB regions do not equate with instantaneous subsidence patterns, but reflect a long history of parcel motions which can include ascent as well

    Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley 20-inch Mach 6 air tunnel

    Get PDF
    Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbier are presented without analysis. The tests were completed in the Langley 20-Inch Mach 6 Tunnel. The 0.04-scale model was tested at angles of attack from 0 to 35 and angles of sideslip from 0 to -4. The 0.02-scale model was tested at angles of attack from -10 to 45 and angles of sideslip from 0 to -4. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel to models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation had provided a means for comparisons between reentry flight pressure data and wind-tunnel data

    Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley continuous flow hypersonic tunnel

    Get PDF
    Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests wre completed in the Langley Continuous Flow Hypersonic Tunnel (CFHT). The 0.04-scale model was tested at angles of attack from -5 deg to 45 deg and angles of sideslip from -3 deg to 3 deg. The 0.02-scale model was tested at angles of attack from -10 deg to 45 deg and angles of sideslip from -5 deg to 5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data

    Pressure distributions on a 0.04-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley unitary plan wind tunnel

    Get PDF
    Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5 deg to 30 deg and angles of sideslip from -5 deg to 5 deg in both test sections. The test Reynolds number was 6.6 x 10 to the 6th power per meter. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data

    The Specific Globular Cluster Frequencies of Dwarf Elliptical Galaxies from the Hubble Space Telescope

    Full text link
    The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dEs --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.Comment: 12 pages (uses aaspp4.sty), 2 figures, 1 table, to appear in the Astrophysical Journa

    Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures

    Get PDF
    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T-B\u27s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T-B\u27s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T-B\u27s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution phase, liquid or ice water content, altitude, and thickness. Effects on T-B of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T-B\u27s. Both liquid and ice clouds impact the T-B\u27s in a variety of ways. The T-B\u27s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirms clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T-B\u27s than do lower clouds. Clouds depress T-B\u27s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T-B\u27s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 mu m near 157 and 183 GHz, and greater than 30-40 mu m at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30-40-mu m range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds

    Origins of Common Neural Inputs to Different Compartments of the Extensor Digitorum Communis Muscle

    Get PDF
    The extensor digitorum communis (EDC) is a multi-compartment muscle that allows dexterous extension of the four digits. However, the level of common input shared across different compartments of this muscle is not well understood. We seek to systematically characterize the common and independent neural input, originated from different levels of the central nervous system, to the different compartments. A motor unit (MU) coherence analysis was used to capture the different sources of common and independent input, by quantifying the coherence of MU discharge between different compartments. The MU activities were obtained from decomposition of surface electromyogram recordings. Our results showed that the MU coherence across different muscle compartments accounted for only a small proportion (60%) in the delta (1-4 Hz) band. Additionally, cross-compartment coherence between the middle and ring-little fingers tended to be higher as compared with other finger combinations. Overall, the common input shared across different fingers are found to be at low to moderate levels, in comparison with the total input, which allows dexterous control of individual digits with some degree of coordinated control of multiple digits
    • …
    corecore