3,198 research outputs found

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery

    Get PDF
    Spaceflight and prolonged bed rest induce deconditioning of the cardiovascular system and bone loss. Previous research has shown declines in femoral bone and marrow perfusion during unloading and with subsequent reloading in hindlimb-unloaded (HU) rats, an animal model of chronic disuse. We hypothesized that the attenuated bone and marrow perfusion may result from altered vasomotor properties of the bone resistance vasculature. Therefore, the purpose of this study was to determine the effects of unloading on the vasoconstrictor and vasodilator properties of the femoral principal nutrient artery (PNA), the main conduit for blood flow to the femur, in 2 wk HU and control (CON) rats. Vasoconstriction of the femoral PNA was assessed in vitro using norepinephrine, phenylephrine, clonidine, KCl, endothelin-1, arginine vasopressin, and myogenic responsiveness. Vasodilation through endothelium-dependent [acetylcholine, bradykinin, and flow-mediated dilation (FMD)] and endothelium-independent mechanisms [sodium nitroprusside (SNP) and adenosine] were also determined. Vasoconstrictor responsiveness of the PNA from HU rats was not enhanced through any of the mechanisms tested. Endothelium-dependent vasodilation to acetylcholine (CON, 86 ± 3%; HU, 48 ± 7% vasodilation) and FMD (CON, 61 ± 9%; HU, 11 ± 11% vasodilation) were attenuated in PNAs from HU rats, while responses to bradykinin were not different between groups. Endothelium-independent vasodilation to SNP and adenosine were not different between groups. These data indicate that unloading-induced decrements in bone and marrow perfusion and increases in vascular resistance are not the result of enhanced vasoconstrictor responsiveness of the bone resistance arteries but are associated with reductions in endothelium-dependent vasodilation

    A Field-Based Approach for Determining ATOFMS Instrument Sensitivities to Ammonium and Nitrate

    Get PDF
    Aerosol time-of-flight mass spectrometry (ATOFMS) instruments measure the size and chemical composition of individual particles in real-time. ATOFMS chemical composition measurements are difficult to quantify, largely because the instrument sensitivities to different chemical species in mixed ambient aerosols are unknown. In this paper, we develop a field-based approach for determining ATOFMS instrument sensitivities to ammonium and nitrate in size-segregated atmospheric aerosols, using tandem ATOFMS-impactor sampling. ATOFMS measurements are compared with collocated impactor measurements taken at Riverside, CA, in September 1996, August 1997, and October 1997. This is the first comparison of ion signal intensities from a single-particle instrument with quantitative measurements of atmospheric aerosol chemical composition. The comparison reveals that ATOFMS instrument sensitivities to both NH_4^+ and NO_3^- decline with increasing particle aerodynamic diameter over a 0.32−1.8 μm calibration range. The stability of this particle size dependence is tested over the broad range of fine particle concentrations (PM_(1.8) = 17.6 ± 2.0−127.8 ± 1.8 μg m^(-3)), ambient temperatures (23−35 °C), and relative humidity conditions (21−69%), encountered during the field experiments. This paper describes a potentially generalizable methodology for increasing the temporal and size resolution of atmospheric aerosol chemical composition measurements, using tandem ATOFMS-impactor sampling

    ARTZ 351.01: Scuplture II - Digital Fabric

    Get PDF

    ARTZ 108A.01: Visual Language - 3D Foundations

    Get PDF

    ARTZ 105A.03: Visual Language - Drawing

    Get PDF

    ARTZ 108A.01: Visual Language - 3-D Design

    Get PDF

    ARTZ 251A.01: Sculpture I

    Get PDF

    ARTZ 595.02: Special Topics - Expanded Studio Practice

    Get PDF

    ART 395.01: Special Topics - Sculpture Casting

    Get PDF
    corecore