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Prisby RD, Behnke BJ, Allen MR, Delp MD. Effects of skeletal
unloading on the vasomotor properties of the rat femur principal
nutrient artery. J Appl Physiol 118: 980–988, 2015. First published
January 29, 2015; doi:10.1152/japplphysiol.00576.2014.—Space-
flight and prolonged bed rest induce deconditioning of the cardiovas-
cular system and bone loss. Previous research has shown declines in
femoral bone and marrow perfusion during unloading and with
subsequent reloading in hindlimb-unloaded (HU) rats, an animal
model of chronic disuse. We hypothesized that the attenuated bone
and marrow perfusion may result from altered vasomotor properties of
the bone resistance vasculature. Therefore, the purpose of this study
was to determine the effects of unloading on the vasoconstrictor and
vasodilator properties of the femoral principal nutrient artery (PNA),
the main conduit for blood flow to the femur, in 2 wk HU and control
(CON) rats. Vasoconstriction of the femoral PNA was assessed in
vitro using norepinephrine, phenylephrine, clonidine, KCl, endothe-
lin-1, arginine vasopressin, and myogenic responsiveness. Vasodila-
tion through endothelium-dependent [acetylcholine, bradykinin, and
flow-mediated dilation (FMD)] and endothelium-independent mech-
anisms [sodium nitroprusside (SNP) and adenosine] were also deter-
mined. Vasoconstrictor responsiveness of the PNA from HU rats was
not enhanced through any of the mechanisms tested. Endothelium-
dependent vasodilation to acetylcholine (CON, 86 � 3%; HU, 48 �
7% vasodilation) and FMD (CON, 61 � 9%; HU, 11 � 11%
vasodilation) were attenuated in PNAs from HU rats, while responses
to bradykinin were not different between groups. Endothelium-inde-
pendent vasodilation to SNP and adenosine were not different be-
tween groups. These data indicate that unloading-induced decrements
in bone and marrow perfusion and increases in vascular resistance are
not the result of enhanced vasoconstrictor responsiveness of the bone
resistance arteries but are associated with reductions in endothelium-
dependent vasodilation.

hindlimb unloading; bone blood flow; microcirculation

SPACEFLIGHT and prolonged bed rest have been shown to have
adverse effects on multiple organ systems. In the skeleton,
chronic unloading of weight-bearing bones uncouples bone
remodeling at the whole tissue level with rates of bone resorp-
tion elevated while formation rates remain largely unchanged.
This uncoupling results in bone loss, a weaker skeleton, and
increased risk of fracture in humans (34, 57). Likewise, the
cardiovascular system undergoes a deconditioning phenome-
non with unloading that impairs its ability to properly regulate
arterial pressure during orthostatic stress (7, 58) and putative

elevations in intracranial pressure (1, 31, 37) negatively affect-
ing the cerebral circulation (1, 54). There are few studies,
however, that have examined the effects of spaceflight on the
skeletal circulation, despite mounting evidence that bone per-
fusion, interstitial fluid flow, and direct vascular-bone cell
coupling mechanisms modulate bone remodeling (5, 8, 12, 20,
25, 43, 55, 56).

Using hindlimb-unloaded (HU) rats as a model for space-
flight and disuse, investigators have reported reduced cancel-
lous bone mineral density, lower bone formation rates, and
diminished mineral apposition rates in long bones of adult rats
(4, 13). In regard to the skeletal circulation, studies have shown
a profound reduction in bone and marrow blood flow during
unloading (12, 52) and a blunting of the reloading hyperemia in
bone and marrow when the animals resume weight-bearing
activity (52). This decrement in the reloading hyperemia is the
result of elevations in bone and marrow vascular resistance
(52). Several factors could account for the reduced skeletal
perfusion and increased vascular resistance with reloading,
including 1) a structural remodeling of the resistance vascula-
ture and vascular network, which has been shown to occur in
long bones from HU rats (21, 52); 2) an enhanced vasocon-
strictor responsiveness of bone resistance arteries; and 3) a
diminished vasodilator responsiveness of the resistance vascu-
lature. The purpose of the present study was to test these latter
two possibilities. The principal nutrient artery (PNA) of the
femur was selected for study because the PNA is the primary
conduit for blood flow to long bones and accounts for �30%
of the resistance to flow in the rat femur (6, 29). We hypoth-
esized that PNA vasoconstrictor responsiveness would be en-
hanced and that both endothelium-dependent and endothelium-
independent vasodilator responses would be impaired in 2-wk
HU animals.

MATERIALS AND METHODS

Animals and Procedures

All procedures employed in this study were approved by the
Florida State University, University of Florida, and Texas A&M
University Institutional Animal Care and Use Committees and con-
formed to the National Institutes of Health (NIH) Guide for the Care
and Use of Laboratory Animals (8th ed., 2011). Four- to six-mo-old
male Sprague-Dawley rats were obtained from Harlan (Houston, TX)
and housed in a temperature-controlled (23 � 2°C) room with a
12:12-h light-dark cycle. Water and rat chow were provided ad
libitum. When the animals were at least 6 mo of age, they were
randomly assigned to either a normal weight-bearing control (CON)
group or a HU group. The hindlimbs of the HU groups were elevated
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to an approximate spinal angle of 40–45° via orthopedic traction tape
placed around the proximal two-thirds of the tail in a modification of
techniques previously described (12, 14, 52). The hindlimbs were
elevated to prevent touching of supportive surfaces while the fore-
limbs maintained contact with the cage floor. The HU animals were
suspended for 2 wk, while CON animals were individually maintained
in their normal cage environment; no 0-day controls were investi-
gated. CON and HU rats were anesthetized with isoflurane (2%) and
euthanized by removal of the myocardium. The upper right and left
hindlimbs of the rat (i.e., femora and surrounding musculature) were
carefully dissected free and placed in cold (4°C) physiological saline
buffer solution (PSS).

Using a stereomicroscope, the femoral PNA was identified and
isolated as it entered the femur through the femoral foramen as
previously shown (19, 45, 46, 52). The isolated PNAs were either
used for in vitro experimentation or saved for mRNA analysis. For in
vitro experiments, PNAs were transferred to a Lucite chamber con-
taining PSS equilibrated to room air. Each end of the PNA was
cannulated with a micropipette (60- to 80-�m-diameter tip) and
secured with 11-0 nylon microfilament sutures (Alcon). The mi-
crovessel chamber was then transferred to the stage of an inverted
microscope whereby the intraluminal diameter could be measured and
recorded (45, 46, 52). PNAs were pressurized to 60 cmH2O (44
mmHg) with two hydrostatic pressure reservoirs. This pressure was
selected based on previously reported intravascular pressures of 43 �
1.8 and 46 � 2.6 mmHg in skeletal muscle resistance arteries of
similar size to the PNA in normotensive rats (41). The distance
between the cannulating micropipettes was adjusted so that the PNA
axial length was straight but not stretched. Leaks in the vessel were
detected by closing the valves of the reservoirs and verifying that
intraluminal diameter remained constant. PNAs that were free from
leaks were warmed to 37°C and allowed to develop spontaneous
baseline tone (�1 h) while those vessels with leaks were discarded.

Experimental Design

A series of in vitro experiments were performed to investigate the
effects of HU on the 1) myogenic, 2) vasoconstrictor, and 3) vasodi-
lator properties of the PNA.

Series 1: evaluation of myogenic response. To assess active myo-
genic vasoconstriction of the PNA, intraluminal pressure was in-
creased by increments of 15 cmH2O by raising the hydrostatic
pressure reservoirs simultaneously. The myogenic response was as-
sessed from 0 to 135 cmH2O. Changes in intraluminal diameters were
recorded following 3–5 min of each step increase in pressure, which
allowed sufficient time for a steady vascular response. The bathing
solution was then replaced with a Ca2�-free PSS buffer every 15 min
for 1 h. A passive pressure-diameter curve was then generated by the
exact protocol utilized for the active myogenic response.

Series 2: evaluation of agonist-evoked vasoconstriction. Concen-
tration-diameter relations were determined for vasoconstrictor ago-
nists acting through �1- and �2-adrenergic receptors (norepinephrine,
10�9–10�4 M), �1-adrenergic receptors (phenylephrine, 10�9–10�4

M), �2-adrenergic receptors (clonidine, 10�9–10�6 M), ETA and ETB

receptors (endothelin-1, 3 � 10�12–10�8 M), V1-receptors (arginine
vasopressin, 10�9–10�4 M), and voltage-gated Ca2� channels (KCl,
10–100 mM). Steady-state changes in intraluminal diameter were
recorded following cumulative additions of these agonists to the
vessel bath. To avoid possible tachyphylaxis, only one vasoconstrictor
response was made per vessel.

Series 3a: evaluation of endothelium-dependent vasodilation. To
evaluate endothelium-dependent flow-mediated vasodilation, intralu-
minal flow was generated through the PNA lumen by creating pres-
sure gradients between the two cannulating pipettes. This was accom-
plished by adjusting the height of the hydrostatic reservoirs attached
to each pipette as previously described (42). Pressure gradients of 2,
4, 10, 20, 30, 40, and 50 cmH2O were generated, and steady-state

changes in intraluminal diameter were recorded 2 min after each step
increase in flow. Concentration-diameter relations were then deter-
mined for bradykinin, a B2-receptor-mediated endothelium-dependent
vasodilator agonist. Steady-state changes in intraluminal diameter
were recorded following the cumulative addition of bradykinin
(10�13–10�7 M) to the vessel bath.

In a separate set of PNAs, concentration-diameter relations were
determined for acetylcholine, a cholinergic receptor-mediated endo-
thelium-dependent vasodilator agonist. Steady-state changes in in-
traluminal diameter were recorded following the cumulative addition
of acetylcholine (10�9–10�4 M) to the vessel bath. Following the
initial acetylcholine concentration response, PNAs from CON and HU
animals were allowed to reestablish spontaneous tone. Vasodilator
responses to acetylcholine were evaluated after a 20-min incubation
with one of the following: 1) PSS buffer containing the nitric oxide
synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME;
10�5 M), 2) PSS buffer containing the cyclooxygenase (COX) inhib-
itor indomethacin (Indo; 10�5 M), and 3) PSS buffer containing
L-NAME (10�5 M) plus Indo (10�5 M).

Series 3b: evaluation of endothelium-independent vasodilation.
Following the bradykinin response described above, PNAs were
washed several times with PSS to allow spontaneous tone to become
reestablished. Vasodilator responses to the cumulative addition of
sodium nitroprusside (10�10–10�4 M) or adenosine (10�9–10�4 M)
were then evaluated.

At the conclusion of each series of experiments, arteries were
washed and incubated in Ca2�-free PSS for 30–60 min. Twenty
microliters of SNP (10�4 M) was then added to the Ca2�-free PSS
solution and incubated for 10 min to ensure smooth muscle relaxation.
Maximal diameter at an intraluminal pressure of 60 cmH2O was
recorded.

mRNA Levels

Isolated PNAs were snap-frozen and stored at �80°C for later
analysis of mRNA levels as described previously (3, 50, 51). PNAs
were later pulverized in lysate buffer, and total RNA was extracted
using an aqueous and ethanol filter isolation method specified for use
in microdissected tissue (RNAqueous-Micro Kit, Applied Biosys-
tems/Ambion, Austin, TX). Total RNA was reverse transcribed into
complementary DNA (cDNA) via the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Carlsbad, CA). cDNA was
then used in the real-time PCR (StepOnePlus; Applied Biosystems) to
determine mRNA levels by way of TaqMan gene expression assays
and endogenous controls (Applied Biosystems) specific for endothe-
lial nitric oxide synthase (eNOS), Cu/Zn-dependent superoxide dis-
mutase (SOD-1), and 18S ribosomal RNA.

Solutions and Drugs

The PSS buffer contained (in mM) 145 NaCl, 4.7 KCl, 1.2
NaH2PO4, 1.17 MgSO4, 2.0 CaCl2, 5.0 glucose, 2.0 pyruvate, 0.02
EDTA, and 3.0 MOPS with a pH of 7.4. Ca2�-free PSS buffer was
identical except that it contained 2.0 mM NaCl instead of 2 mM
EDTA and CaCl2. All chemicals and drugs were obtained from
Sigma-Aldrich (St. Louis, MO).

Muscle and Bone

The right soleus muscle was isolated and weighed from each
animal to determine the efficacy of the unloading treatment to induce
muscle atrophy in HU rats. In rats used to determine PNA endothe-
lium-dependent vasodilation to acetylcholine, the right femur was
cleaned of soft tissue after isolating the PNA, wrapped in gauze
soaked in phosphate buffer solution, and stored at �80°C for later
analysis of volumetric bone mineral density (vBMD).
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Peripheral Quantitative Computed Tomography (pQCT)

To estimate the effects of unloading on cortical and cancellous
vBMD of the femur, tomographic scans were performed ex vivo on
femoral necks using a Stratec XCT Research-M device (Norland, Fort
Atkinson, WI) as previously described in detail (4). Two scan slices
were taken at the midneck region of the femoral neck. Analyses were
performed using STRATEC software (version 5.40B). Values of
femoral neck cortical and cancellous vBMD were averaged between
the slices to derive a mean value for each animal.

Statistical Analysis

The development of spontaneous basal tone was expressed as the
percent constriction relative to maximal diameter and calculated as
follows:

spontaneous baseline tone �%� � �Dmax � Db� ⁄ Dmax � 100

where Dmax is the maximal diameter recorded at the pressure of 60
cmH2O and Db is the steady-state baseline diameter.

Active myogenic responses and passive diameter measurements
recorded in response to pressure changes were normalized according
to the following equation:

normalized diameter �%� � �Ds ⁄ Dmax� � 100

where Ds is the steady state diameter measured after each incremental
change in pressure and Dmax is the maximal inner diameter recorded
at 135 cmH2O in calcium-free PSS. The data are expressed as
normalized diameters to account for differences in vessels size be-
tween CON and HU rats. Passive pressure-diameters are also ex-
pressed relative to diameters measured at 135 cmH2O in Ca2�-free
PSS.

Agonist-induced vasoconstrictor responses were expressed as the
percent change from baseline diameter according to the following
equation:

vasoconstriction �%� � �Db � Ds� ⁄ Db � 100

where Db is the initial baseline measurement recorded prior to the
addition of the vasoconstrictor agonist and Ds is the steady-state
diameter measured 2 min following administration of each agonist
dose.

Agonist-induced vasodilator responses were expressed as the per-
centage of maximal relaxation according to the following formula:

vasodilation �%� � �Ds � Db� ⁄ �Dmax � Db� � 100

where Dmax is the maximal inner diameter recorded at 60 cmH2O in
calcium-free PSS, Ds is the steady-state inner diameter recorded after
each addition of the vasodilator substance or flow, and Db is the initial
baseline inner diameter recorded immediately prior to the first addi-
tion of acetylcholine, bradykinin, sodium nitroprusside, adenosine, or
initiation of flow.

Pressure-response, dose-response, and flow-response curves were
evaluated by using two-way repeated-measures ANOVA to detect
differences between (CON vs. HU) and within (pressure, dose, or
flow) factors. Post hoc analyses were performed with Bonferroni’s test
for pairwise comparisons where appropriate. Student’s unpaired t-
tests were used to determine the significance of differences in body
mass, soleus muscle mass, vBMD, and PNA spontaneous tone,
maximum diameter, and eNOS and SOD-1 mRNA expression. To
examine the relation between peak endothelium-dependent vasodila-
tion and cancellous vBMD, linear regression analysis was performed.
Alpha levels of P � 0.05 were considered statistically significant. All
data are presented as means � SE.

RESULTS

Animal, Bone, and PNA Characteristics

Body mass of HU rats was �8% lower than that of CON
animals (Table 1). The mass of soleus muscle, a postural
hindlimb muscle composed predominantly of slow-twitch type
I fibers (17), was �35% lower in HU rats (Table 1), and the
soleus muscle-to-body mass ratio was �30% lower in HU
animals (Table 1). Cortical BMD of the femoral neck was not
different between CON and HU rats, while cancellous BMD
was lower in HU rats (�18%; Table 1). The reduction in soleus
muscle mass and soleus muscle-to-body mass ratio validate the
efficacy of the 2-wk hindlimb unloading treatment, while the lower
cancellous vBMD in the femoral neck confirms the expected
bone loss in the animals studied.

The maximal intraluminal diameter of PNAs from HU rats
was smaller than that in CON rats (Table 1). There was no
difference in the development of spontaneous tone in PNAs
from HU and CON rats (Table 1).

Myogenic and Passive Pressure-Diameter Relation

There were no differences in the active myogenic vasocon-
striction between groups as intraluminal pressure was elevated
in the PNA (Fig. 1A). Likewise, there were no differences in
the passive pressure-diameter relations of PNAs from CON
and HU rats (Fig. 1B).

Vasoconstrictor Responses

Vasoconstrictor agonists produced concentration-dependent
decreases in intraluminal diameter in PNAs from CON and HU
rats. The percent vasoconstriction of PNAs evoked by norepi-
nephrine (Fig. 2A), clonidine (Fig. 2C), KCl (Fig. 3A), endo-
thelin-1 (Fig. 3B), and arginine vasopressin (Fig. 3C) were not
different between CON and HU animals. However, the percent
vasoconstriction elicited by phenylephrine, the �1-receptor
adrenergic agonist, was lower in PNAs from HU rats (Fig. 2B).

Vasodilator Responses and mRNA Expression

Intraluminal flow through the vessel lumen elicited an en-
dothelium-dependent flow-mediated dilation in PNAs from
CON rats (Fig. 4A). Flow-mediated dilation in PNAs from HU
rats was severely blunted relative to that in CON PNAs. The
cumulative addition of bradykinin, an endothelium-dependent
vasodilator, elicited a modest peak dilation (�25–40%) from
both CON and HU rat PNAs; these vasodilator responses were

Table 1. Body mass, soleus muscle mass, femoral neck
volumetric bone mineral density (vBMD), and principal
nutrient artery (PNA) characteristics

Control Hindlimb Unloaded

Body mass, g 433 � 10 399 � 9*
Soleus muscle mass, mg 188 � 6 122 � 9*
Soleus-body mass ratio, mg/g 0.44 � 0.01 0.31 � 0.01*
Cortical vBMD, mg/cm3 1,249 � 31 1,239 � 27
Cancellous vBMD, mg/cm3 739 � 28 608 � 30*
PNA maximal diameter, �m 181 � 4 162 � 7*
PNA basal tone, % 31 � 2 34 � 3

Values are means � SE. *Significant differences from control mean (P 	
0.05).
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not different between groups (Fig. 4B). Vasodilation to acetyl-
choline, also an endothelium-dependent vasodilator, was atten-
uated in PNAs from HU rats relative to that in CON animals
(Fig. 4C). Inhibition of the NOS signaling pathway with
L-NAME abolished differences in endothelium-dependent va-
sodilation between PNAs from CON and HU rats (Fig. 5A),
whereas group differences in acetylcholine-mediated vasodila-
tion remained during COX inhibition with Indo (Fig. 5B). The
combined inhibition of the NOS and COX signaling pathways
fully suppressed endothelium-dependent vasodilation in the
PNA and eliminated group differences (Fig. 5C). PNA eNOS
mRNA expression was lower in HU rats relative to that in
CON animals (Fig. 6A). However, SOD-1 mRNA expression
was not different between groups (Fig. 6B). Endothelium-
independent vasodilation to both sodium nitroprusside (Fig.
7A) and adenosine (Fig. 7B) were similar between CON and
HU groups.

DISCUSSION

Previous research has shown that bone and marrow perfu-
sion is diminished and vascular resistance is elevated during
skeletal unloading (12, 52), as well as during reloading follow-
ing a 2-wk period of unloading (52). The purpose of the present
investigation was to assess whether the elevation in bone and

marrow vascular resistance is associated with greater vasocon-
strictor responsiveness or reduced vasodilator function of the
femoral PNA, a resistance artery which is a primary determi-
nant of vascular resistance in long bones (6, 29). The data
demonstrate that HU does not enhance constriction through
any of the vasoconstrictor mechanisms tested. These include
receptor-mediated vasoconstrictor responses [i.e., �-adrenergic
receptors (Fig. 2), ET-receptors (Fig. 3B), and V1-receptors
(Fig. 3C)] and non-receptor-mediated vasoconstrictor re-
sponses (Figs. 1A and 3A). The passive pressure-diameter
response was also unchanged by HU (Fig. 1B), indicating that
alterations in PNA mechanical properties do not account for
the higher vascular resistance in 2-wk unloaded bones. Finally,
endothelium-independent vasodilation induced by an exoge-
nous nitric oxide (NO) donor (Fig. 7A) and the metabolite
adenosine (Fig. 7B) were not impaired by HU. In contrast,Pressure (cmH2O)
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Fig. 1. Effects of hindlimb unloading on active myogenic vasoconstriction (A)
and the passive pressure-diameter relation (B) of the femoral principal nutrient
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endothelium-dependent vasodilation induced through flow
(Fig. 4A) and acetylcholine (Fig. 4C), but not bradykinin (Fig.
4B), were attenuated by HU, and this occurred through an
impairment of the NOS signaling pathway (Fig. 5). This
decrement in endothelium-dependent vasodilation was associ-
ated with a reduction in eNOS mRNA expression (Fig. 6A), but
not a change in SOD-1 mRNA levels (Fig. 6B). Collectively,
these data demonstrate that HU has little effect on smooth
muscle vasoconstrictor, vasodilator, or mechanical function in
bone resistance arteries and, consequently, indicate that these
are not mechanisms for the higher long bone vascular resis-
tance during either unloading or subsequent reloading. HU-
induced decrements in NO-mediated endothelium-dependent
vasodilation in the bone resistance vasculature are, however, a
mechanism that would function to limit bone and marrow
perfusion and elevate vascular resistance during unloading and
reloading.

Changes in the mechanical and chemical milieu of blood
vessels are known to alter the functional, structural, and me-
chanical properties of arteries (26, 27, 32). Hindlimb unloading
in the rat induces a headward fluid shift (12, 23, 47) that
diminishes arterial pressure in the hindlimb arteries, as well as
eliciting both immediate and gradual decreases in bone and
marrow perfusion (12). Such changes in the local environment
of bone resistance arteries could impact their intrinsic vasomo-
tor properties and the resistance they generate in regulating
bone and marrow blood flow. Previous work has shown that
unloading of long bones induces several types of vascular
adaptations, including a narrowing of the intraluminal di-
ameter of bone resistance arteries (52) and rarefaction of the
bone microvascular network and supporting infrastructure
(21, 38). Results from the present study demonstrating a
reduction in the maximal PNA diameter (Table 1) are
consistent with these observations that the unloading in-
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duces a structural remodeling of the bone vascular network.
Such structural changes in the bone vasculature, as well as
impairment of endothelium-dependent vasodilation of the
resistance arteries (Fig. 4, A and C), would function to
elevate bone vascular resistance and serve to limit the
reloading hyperemia and blood flow capacity in bone (52).

Colleran et al. (12) proposed that bone loss associated with
unloading could be impacted by several cardiovascular factors,
including 1) reduced bone interstitial fluid flow subsequent to
decrements in bone and marrow blood flow, and 2) impairment
of mechanisms directly coupling vascular endothelial cell sig-
naling with bone cell activity (i.e., osteoclasts, osteocytes, and
osteoblasts). In regard to this latter mechanism, release of NO
and PGI2 from vascular endothelial cells can be modulated in
response to increases or decreases in blood flow and shear

stress (9, 35). These molecules not only serve as smooth
muscle vasodilator agents, but could act directly on bone cells
to elicit changes in bone cell activity. For example, NO is a
potent inhibitor of osteoclasts (36) and promoter of osteoblastic
differentiation (24), while PGI2 is a powerful inhibitor of
osteoclastic bone resorption (10, 44). Such vascular-bone cell
interactions could be particularly important in the highly vas-
cularized cancellous bone (2). In support of this notion, studies
have shown that both decreases and increases in cancellous
bone volume are associated with impairment and enhancement
of bone vascular endothelial function, respectively, with aging
(46), altered estrogen status (45, 48, 53), and low-impact
exercise training (19). Results from the present study of un-
loading-induced bone loss also demonstrate a relation between
cancellous bone mineral density and peak PNA endothelium-
dependent vasodilation (Fig. 8). Using inhibitors of endothelial
cell signaling mechanisms, the data further indicate that NO
and PGI2 are active vasodilators in the femoral PNA [i.e., NO
and PGI2 account for �50% and �30% of endothelium-
mediated vasodilation, respectively, in CON rats (Figs. 4 and
5)]. Inhibition of NO signaling eliminates differences in
vasodilation observed in PNAs from CON and HU rats (Fig.
5A), whereas group differences persist during inhibition of
PGI2 (Fig. 5B). These results suggest that the NOS signaling
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pathway in the bone vasculature is the primary mechanism
impaired by unloading, and that the resulting attenuation of
NO bioavailability could conceivably impact the bone prop-
erties.

Previous work has shown that unloading-induced changes in
bone properties occur regionally, with the greatest decrement
in BMD occurring in the cancellous bone of the femur in HU
rats (4, 30). Further, the degree of bone loss that occurs with
unloading varies over time (4, 13, 22). Similar observations
have been made with regard to the bone and marrow circula-
tion. Colleran et al. (12) reported that with 10 min and 1 wk of
HU, blood flow was lower in almost all regions of the femur,
whereas with 4 wk of unloading there were further decrements
in perfusion of the femoral diaphysis and diaphyseal marrow.
Both the diaphysis and diaphyseal marrow are regions of the
femur thought to be perfused primarily via the PNA (6).
Stabley et al. (52) also reported that following a period of 1 wk
of HU, the reloading hyperemia was diminished in only one
region of the femur, the distal metaphysis, whereas with 2-wk
HU the increase in blood flow with reloading was attenuated in
all regions of the femur. These data demonstrate that like the
bone itself, there are both regional and temporal effects of
unloading on the bone and marrow circulation. In the present
study, we have described the effects of unloading on the
vasomotor responses of one portion of the bone vasculature at
one point in time. Although the PNA is an important site of
regulation for long bone and marrow blood flow, it seems
likely that regional differences in vascular responsiveness and
structure exist in unloaded bones. The bone circulation is one

of the most difficult to study in the body, and perhaps for this
reason it is also one of the least understood among the various
organ systems. Much remains to be learned about adaptations
of the bone and marrow vasculature with unloading, and how
such changes affect vascular-bone interactions.

In contrast to the findings of the present investigation that
HU has little effect on the vasoconstrictor properties of resis-
tance arteries in bone, 2 wk of HU and spaceflight have been
shown to diminish the intrinsic vasoconstrictor responsiveness
of arteries from various other regions of the body, including the
abdominal (15, 18) and thoracic aortas (18), mesenteric resis-
tance arteries (3, 11), and resistance arteries from the gastroc-
nemius muscle (14, 51). The one vascular bed that has shown
similar functional and structural vascular alterations to that of
the femoral PNA is the resistance arteries from the soleus
muscle. The soleus muscle is a highly oxidative hindlimb
muscle that is tonically active in postural maintenance (17).
Consequently, soleus muscle maintains a relatively high blood
perfusion rate during standing (12, 17, 33, 52), similar to that
of the femoral cancellous bone and marrow. Further, both
soleus muscle and femoral cancellous bone and marrow blood
flow are reduced during postural unloading to approximately
one-tenth of that during standing (12, 40, 52). Soleus muscle
resistance arteries from 2-wk HU rats show few changes in the
intrinsic vasoconstrictor responsiveness (14), but demonstrate
impaired NO-mediated endothelium-dependent vasodilation,
lower eNOS mRNA expression, and reductions in maximal
diameter (16, 28, 39, 49). This decrement in endothelium-
dependent vasodilation and remodeling of resistance artery
structure underlie elevations in soleus muscle vascular resis-
tance and decreases in the soleus muscle hyperemia during
exercise (59). Thus the putative changes in the mechanical and
chemical environment during unloading that drive similar
functional and structural adaptations to the resistance vascula-
ture of hindlimb long bones and soleus muscle both result in
impaired perfusion rates with reloading.

In summary, previous research has shown declines in fem-
oral bone and marrow perfusion during unloading and reload-
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ing, which correspond to elevations in vascular resistance (12,
52). We hypothesized that the heightened vascular resistance is
the result of enhanced vasoconstrictor or diminished vasodila-
tor responsiveness of the bone resistance vasculature. The
results demonstrate that vasoconstrictor and vasodilator re-
sponsiveness of the PNA smooth muscle cells, as well as the
PNA mechanical properties, are not altered by unloading in a
manner that would serve to elevate vascular resistance. How-
ever, endothelium-dependent vasodilation mediated by flow
(Fig. 4A) and acetylcholine (Fig. 4C) were attenuated, and this
occurred through an impairment of the vascular endothelial cell
NOS signaling pathway (Figs. 5 and 6A). Such changes in the
intrinsic vasodilator properties of the bone resistance vascula-
ture, as well as the structural modifications that have been
shown to occur in the vasculature of chronically unloaded bone
(present study, 21, 52), would function to increase vascular
resistance and decrease bone and marrow perfusion in un-
loaded bones. Such changes in fluid flow through the bone and
impairment of endothelial cell NO signaling could contribute
to the loss of bone that occurs with unloading, principally in
the highly vascularized cancellous bone.
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