650 research outputs found
Recommended from our members
The petrology of fine-grained micrometeorites: Evidence for the diversity of primitive asteroids
We report the discovery by analytical TEM of serpentine and phases interpreted as dehydroxylates of serpentine in ultramicrotomed sections of a number of fine-grained Antarctic micrometeorites
Evaporative cooling of trapped fermionic atoms
We propose an efficient mechanism for the evaporative cooling of trapped
fermions directly into quantum degeneracy. Our idea is based on an electric
field induced elastic interaction between trapped atoms in spin symmetric
states. We discuss some novel general features of fermionic evaporative cooling
and present numerical studies demonstrating the feasibility for the cooling of
alkali metal fermionic species Li, K, and Rb. We also
discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including
the effects of anisotropic interactions.Comment: to be publishe
Ferromagnetic phase transition and Bose-Einstein condensation in spinor Bose gases
Phase transitions in spinor Bose gases with ferromagnetic (FM) couplings are
studied via mean-field theory. We show that an infinitesimal value of the
coupling can induce a FM phase transition at a finite temperature always above
the critical temperature of Bose-Einstein condensation. This contrasts sharply
with the case of Fermi gases, in which the Stoner coupling can not lead
to a FM phase transition unless it is larger than a threshold value . The
FM coupling also increases the critical temperatures of both the ferromagnetic
transition and the Bose-Einstein condensation.Comment: 4 pages, 4 figure
Recommended from our members
Microcraters in aluminum foils exposed by Stardust
We will present preliminary results on the nature and size frequency distribution of microcraters that formed in aluminum foils during the flyby of comet Wild 2 by the Stardust spacecraft
A search for new members of the βPictoris, Tucana-Horologium and ɛCha moving groups in the RAVE data base
We report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the Radial Velocity Experiment (RAVE) survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy. The results include the identification of one new and five likely members of the βPictoris moving group, ranging from spectral types F9 to M4 with the majority being M dwarfs, one K7 likely member of the εCha group and two stars in the Tucana-Horologium association. Based on the positive identifications, we foreshadow a great potential of the RAVE data base in progressing towards a full census of young moving groups in the solar neighbourhood
Simultaneous Magneto-Optical Trapping of Two Lithium Isotopes
We confine 4 10^8 fermionic 6Li atoms simultaneously with 9 10^9 bosonic 7Li
atoms in a magneto-optical trap based on an all-semiconductor laser system. We
optimize the two-isotope sample for sympathetic evaporative cooling. This is an
essential step towards the production of a quantum-degenerate gas of fermionic
lithium atoms.Comment: 4 pages, 3 figure
Photon-axion conversion in intergalactic magnetic fields and cosmological consequences
Photon-axion conversion induced by intergalactic magnetic fields causes an
apparent dimming of distant sources, notably of cosmic standard candles such as
supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the
luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra,
and on the spectrum of the cosmic microwave background. The original idea of
explaining the apparent dimming of distant SNe Ia without cosmic acceleration
is strongly constrained by these arguments. However, the cosmic equation of
state extracted from the SN Ia luminosity-redshift relation remains sensitive
to this mechanism. For example, it can mimic phantom energy.Comment: (14 pages, 9 eps figures) Contribution to appear in a volume of
Lecture Notes in Physics (Springer-Verlag) on Axion
Rotational master equation for cold laser-driven molecules
The equations of motion for the molecular rotation are derived for
vibrationally cold dimers that are polarized by off-resonant laser light. It is
shown that, by eliminating electronic and vibrational degrees of freedom, a
quantum master equation for the reduced rotational density operator can be
obtained. The coherent rotational dynamics is caused by stimulated Raman
transitions, whereas spontaneous Raman transitions lead to decoherence in the
motion of the quantized angular momentum. As an example the molecular dynamics
for the optical Kerr effect is chosen, revealing decoherence and heating of the
molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
- …