14 research outputs found

    Effective Population Size, Demography, and Viability of Eastern Massasaugas (Sistrurus catenatus) in Southwest Michigan

    Get PDF
    As humans increasingly exploit natural areas, wildlife populations face a growing number of threats that often result in population decline and isolation. Small, isolated populations are vulnerable to extirpation due to both genetic and demographic factors. Yet, low detectability of many imperiled species often precludes the collection of population-level data important for assessing population viability and implementing successful conservation. The eastern massasauga (Sistrurus catenatus) is a cryptic pitviper that has been extirpated throughout much of its historic range due to agricultural conversion of wetland habitat and other synergistic threats. Consequently, this species is federally listed as threatened in both the United States and Canada, and most remnant populations are believed to be small and isolated. However, most extant populations lack data on population size and long-term survival rates, making effective management, monitoring, and viability assessments difficult. To address these data deficiencies, I estimated the genetic effective population size (Ne) and census population size (Nc) for eastern massasaugas at two sites in southwest Michigan. My results revealed small Nc, with approximately 108 (95% CI = 87–165) and 148 (95% CI = 102–295) adults estimated at the study sites in Cass County and Barry County, respectively. Estimates of Ne were even smaller: approximately 29.5 (95% CI = 22.2–40.5) for Cass County and 44.2 (95% CI =29.7–73.4) for Barry County. Additionally, Ne/Nc ratios were similar across study sites. Secondly, for the Barry County population, I used mark-recapture data spanning 2008–2016 to estimate annual apparent survival rates of adults. Using these estimates and other parameter values obtained from my site and a nearby population, I modeled population viability over the next 100 years. I also performed a sensitivity analysis to assess the relative influence of model parameters on extinction risk. I estimated annual apparent survival rates of 0.79 (95% CI = 0.68–0.87) for adult males and 0.78 (95% CI = 0.68–0.86) for adult females. Results of my sensitivity analysis suggest that actions promoting high survival of adult females should be a management priority, followed by activities that facilitate high reproductive output and neonate survival

    Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Get PDF
    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change

    Relationship between latitude (untransformed) and age-zero annual growth as explained by the top-ranked model using AIC<sub>c</sub> (Table 3).

    No full text
    <p>The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0172011#pone.0172011.g001" target="_blank">Fig 1</a>.</p

    Relationship between mean annual precipitation (untransformed) and neonate mass as explained by the top-ranked model using AIC<sub>c</sub> (Table 3).

    No full text
    <p>The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0172011#pone.0172011.g001" target="_blank">Fig 1</a>.</p

    Locations of Eastern Massasauga study sites (counties/districts shaded black) and the approximate historic range of the Eastern Massasauga (gray shading, from http://www.iucnredlist.org/).

    No full text
    <p>County and district codes: IA = Bremer, IA; IL.1 = Clinton, IL; IL.2 = DuPage, IL; IL.3 = Cook/ Lake, IL; IL.4 = Piatt, IL; IL.5 = Warren, IL, IL.6 = Will, IL; IN.1 = Hendricks, IN; IN.2 = LaGrange, IN; IN.3 = Marshall, IN; MI.1 = Barry, MI; MI.2 = Cass, MI; MI.3 = Kalkaska, MI; MI.4 = Lenawee, MI; MI.5 = Oakland, MI; MI.6 = Van Buren, MI; MI.7 = Washtenaw, MI; NY.1 = Genesee, NY; NY.2 = Onondaga, NY; OH.1 = Ashtabula, OH; OH.2 = Champaign, OH; OH.3 = Clark, OH; OH.4 = Greene, OH; OH.5 = Greene/ Warren, OH; OH.6 = Hardin, OH; OH.7 = Trumball, OH; OH.8 = Wyandot, OH; ONT.1 = Bruce, ONT; ONT.2 = Essex, ONT; ONT.3 = Muskoka, ONT; ONT.4 = Beausoliel Island, ONT; ONT.5 = Parry Sound District (1995–1996), ONT; ONT.6 = Parry Sound District (1992–2009), ONT; ONT.7 = Regional Municipality of Niagara, ONT; PA = Butler/ Venango, PA; WI.1 = Buffalo, WI; WI.2 = Juneau/ Monroe, WI. Reprinted and modified from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0172011#pone.0172011.ref150" target="_blank">150</a>] under a CC BY license, with permission from [Collin P. Jaeger], original copyright [2016] (See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0172011#pone.0172011.s003" target="_blank">S3 File</a>).</p

    Snout‐vent length plotted against capture day‐of‐year of Eastern Massasaugas captured during 2006–2014 in Cass County, Michigan.

    No full text
    <p>Seven distinct age classes are evident: age 0 (blue) includes recently born animals prior to their first hibernation; age 1 (gray) includes animals captured following their first hibernation, but prior to their second hibernation; age 2 (black) includes animals captured following their second hibernation, but prior to their third hibernation, and so on; age 3 (white); age 4 (orange); age 5 (red); age 6 (yellow). Age 1 begins to overlap with age 2 in August (~ DOY 225).</p

    Relationship between latitude (untransformed) and size–fecundity (natural log back-transformed) as explained by the top-ranked model using AIC<sub>c</sub> (Table 3).

    No full text
    <p>Female size was held constant at 55.2 cm SVL based on the average size of adult females in Cass County, Michigan. The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0172011#pone.0172011.g001" target="_blank">Fig 1</a>. The image of dam and offspring was taken within minutes of parturition in Cass County, Michigan (Photograph credit, E. T. Hileman).</p
    corecore