617 research outputs found

    The President\u27s Powers as Commander-in-Chief Versus Congress\u27 War Power and Appropriations Power

    Full text link
    This joint work explores a variety of viewpoints all centered around the War Powers Resolution and its application to the situation in the Persian Gulf

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals

    Hyporheic Exchange and Water Chemistry of Two Arctic Tundra Streams of Contrasting Geomorphology

    Get PDF
    The North Slope of Alaska’s Brooks Range is underlain by continuous permafrost, but an active layer of thawed sediments develops at the tundra surface and beneath streambeds during the summer, facilitating hyporheic exchange. Our goal was to understand how active layer extent and stream geomorphology influence hyporheic exchange and nutrient chemistry. We studied two arctic tundra streams of contrasting geomorphology: a high-gradient, alluvial stream with riffle-pool sequences and a low-gradient, peat-bottomed stream with large deep pools connected by deep runs. Hyporheic exchange occurred to ~50 cm beneath the alluvial streambed and to only ~15 cm beneath the peat streambed. The thaw bulb was deeper than the hyporheic exchange zone in both stream types. The hyporheic zone was a net source of ammonium and soluble reactive phosphorus in both stream types. The hyporheic zone was a net source of nitrate in the alluvial stream, but a net nitrate sink in the peat stream. The mass flux of nutrients regenerated from the hyporheic zones in these two streams was a small portion of the surface water mass flux. Although small, hyporheic sources of regenerated nutrients help maintain the in-stream nutrient balance. If future warming in the arctic increases the depth of the thaw bulb, it may not increase the vertical extent of hyporheic exchange. The greater impacts on annual contributions of hyporheic regeneration are likely to be due to longer thawed seasons, increased sediment temperatures or changes in geomorphology

    The Far-Ultraviolet Spectrum and Short Timescale Variability of AM Herculis from Observations with the Hopkins Ultraviolet Telescope

    Get PDF
    Using the Hopkins Ultraviolet Telescope (HUT), we have obtained 850-1850 angstrom spectra of the magnetic cataclysmic variable star AM Her in the high state. These observations provide high time resolution spectra of AM Her in the FUV and sample much of the orbital period of the system. The spectra are not well-modelled in terms of simple white dwarf (WD) atmospheres, especially at wavelengths shortward of Lyman alpha. The continuum flux changes by a factor of 2 near the Lyman limit as a function of orbital phase; the peak fluxes are observed near magnetic phase 0.6 when the accreting pole of the WD is most clearly visible. The spectrum of the hotspot can be modelled in terms of a 100 000 K WD atmosphere covering 2% of the WD surface. The high time resolution of the HUT data allows an analysis of the short term variability and shows the UV luminosity to change by as much as 50% on timescales as short as 10 s. This rapid variability is shown to be inconsistent with the clumpy accretion model proposed to account for the soft X-ray excess in polars. We see an increase in narrow line emission during these flares when the heated face of the secondary is in view. The He II narrow line flux is partially eclipsed at secondary conjunction, implying that the inclination of the system is greater than 45 degrees. We also present results from models of the heated face of the secondary. These models show that reprocessing on the face of the secondary star of X-ray/EUV emission from the accretion region near the WD can account for the intensities and kinematics of most of the narrow line components observed.Comment: 19 pp., 12 fig., 3 tbl. To appear in The Astrophysical Journal. Also available at http://greeley.pha.jhu.edu/papers/amherpp.ps.g

    Differential transcriptomic responses to heat stress in surface and subterranean diving beetles

    Get PDF
    Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38°C cf. 42–46°C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35°C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level

    Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    Get PDF
    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas
    • …
    corecore