7 research outputs found

    Similarities and differences between the E5 oncoproteins of bovine papillomaviruses type 1 and type 4: Cytoskeleton, motility and invasiveness in E5-transformed bovine and mouse cells

    Get PDF
    Bovine papillomaviruses (BPVs) are oncogenic viruses. In cattle, BPV-1/2 is associated with urinary bladder cancer and BPV-4 with upper GI tract cancer. BPV E5 is a small hydrophobic protein localised in the endoplasmic reticulum (ER) and Golgi apparatus (GA). E5 is the major transforming protein of BPVs, capable of inducing cell transformation in cultured mouse fibroblasts and, in cooperation with E7, in primary bovine cells. E5-induced cell transformation is accompanied by activation of several cellular protein kinases, including growth factor receptors, and alkalinisation of endosomes and GA. We have reported that BPV E5 causes swelling and fragmentation of the GA and extensive vacuolisation of the cytoplasm. We now show that E5 from both BPV-1 and BPV-4 disturbs the actin cytoskeleton and focal adhesions in transformed bovine cells, where these morphological and behavioural characteristics are accompanied by hyperphosphorylation of the cellular phosphotyrosine kinase c-src. Both BPV-1 and BPV-4 E5 increase the motility of transformed mouse cells, but only BPV-1 E5 causes transformed mouse cells to penetrate a matrigel matrix. BPV-1 transformed mouse cells, but not BPV-4 transformed mouse cells, have hyperhpsphorylated c-src

    Variants of Simian Virus 40-Transformed 3T3 Cells That Are Resistant to Concanavalin A

    No full text
    By treating populations of simian virus 40 (SV40)-transformed 3T3 cells with concanavalin A, variants have been isolated which are resistant to the killing action of the lectin. The variants (i) resemble 3T3 cells morphologically and in some of their growth characteristics; (ii) are not agglutinated by high concentrations of concanavalin A or wheat germ agglutinin, but can be rendered agglutinable by treatment with low concentrations of trypsin; (iii) bind the same number of concanavalin A molecules as 3T3 or SV3T3 cells; (iv) cannot be transformed by SV40 and are resistant to focus formation after infection with murine sarcoma virus; (v) contain SV40-specific T antigen and RNA and; (vi) yield wild-type SV40 virus after heterokaryon formation with BS-C-1 cells

    Selection of Revertants of Kirsten Sarcoma Virus Transformed Nonproducer BALB/3T3 Cells

    No full text
    Revertants of Kirsten sarcoma virus transformed nonproducer BALB/3T3 cells (KA31 cells) were isolated after exposing the transformed cells to 5-fluorodeoxyuridine at high cell density, or when suspended in methylcellulose. Revertants were also isolated by treating KA31 cells with the lectin, concanavalin A, which is manyfold more toxic to transformed cells than for normal cells. The revertants resemble BALB/3T3 cells in their morphology and growth characteristics in that they have a low saturation density, fail to grow in 1% calf serum or when suspended in methylcellulose, and cease to synthesize DNA after reaching their saturation density. Infection by murine leukemia virus rescues Kirsten sarcoma virus from only the concanavalin-A-selected variants, though all the revertants are susceptible to infection by leukemia virus. The concanavalin A revertants also become transformed after infection with murine leukemia virus. All the revertants can be transformed by Kirsten sarcoma virus but not by simian virus 40

    Viral DNA in Transformed Cells. III. The Amounts of Different Regions of the SV40 Genome Present in a Line of Transformed Mouse Cells

    No full text
    (32)P-Labeled SV40 DNA was treated sequentially with restricting endonucleases EcoRI and Hpa I, and the resulting four fragments of DNA were separated by gel electrophoresis. The kinetics of renaturation of each of the fragments and of complete SV40 DNA were measured in the presence of DNA extracted from the SVT2 line of SV40-transformed mouse cells. It was found that these cells contain about six copies of a segment of DNA which includes the early region of the SV40 genome, and about one copy of the late viral sequences. To map the region of the viral genome which is transcribed in SVT2 cells, separated strands of each of the four fragments were prepared and hybridized to total transformed cell RNA. Part of the E strands of the two DNA fragments (A and C) which span the early region of the SV40 genome were found to enter the hybrid

    BTB-Kelch protein Krp1 regulates proliferation and differentiation of myoblasts

    No full text
    The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion
    corecore