57 research outputs found

    Ferredoxin-ferredoxin NADP reductase interaction:catalytic differnces between the soluble and thylakoid-bound complex

    Get PDF
    2Ferredoxin-NADP reductase (FNR) and ferredoxin form a complex when the former is membrane-bound as they do when both components are in solution, with the same dissociation constant. The rate constant of NADP photoreduction, first order with respect to the complex, is more than 20-times higher when FNR is membrane-bound than when the enzyme is in solution. The Arrhenius activation energy is identical in both conditions. These observations are interpreted in terms of ‘entropic catalysis’ of NADP reduction by the thylakoid-bound FNR.openForti G.; Bracale M.Forti, G.; Bracale, Marcell

    Isoprene Emission Influences the Proteomic Profile of Arabidopsis Plants under Well-Watered and Drought-Stress Conditions

    Get PDF
    Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene\u2010emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non\u2010emitting plants under both drought\u2010stress (DS) and well\u2010watered (WW) conditions. We aimed to investigate whether isoprene\u2010emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC\u2013 MS/MS\u2010based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking

    Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances Paraquat-induced photooxidative stress and Nitric Oxide-induced cell death

    Get PDF
    The production and characterization of Arabidopsis plants containing a transgene in which the Arabidopsis tAPX is inserted in antisense orientation, is described. tAPX activity in these transgenic tAPX plants is around 50% of control level. The tAPX antisense plants are phenotypically indistinguishable from control plants under normal growth conditions; they show, however, enhanced sensitivity to the O 2- -generating herbicide, Paraquat. Interestingly, the tAPX antisense plants show enhanced symptoms of damage when cell death is triggered through treatment with the nitric oxide-donor, SNP. These results are in accordance with the ones recently obtained with transgenic plants overexpressing tAPX; altogether, they suggest that tAPX, besides the known ROS scavenging role, is also involved in the fine changes of H 2O2 concentration during signaling events

    Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants

    Get PDF
    Pharmaceutically active compounds (PACs) are continuously dispersed into the environment due to human and veterinary use, giving rise to their potential accumulation in edible plants. In this study, Eruca sativa L. and Zea mays L. were selected to determine the potential uptake and accumulation of eight different PACs (Salbutamol, Atenolol, Lincomycin, Cyclophosphamide, Carbamazepine, Bezafibrate, Ofloxacin and Ranitidine) designed for human use. To mimic environmental conditions, the plants were grown in pots and irrigated with water spiked with a mixture of PACs at concentrations found in Italian wastewaters and rivers. Moreover, 10 7 and 100 7 concentrations of these pharmaceuticals were also tested. The presence of the pharmaceuticals was tested in the edible parts of the plants, namely leaves for E. sativa and grains for Z. mays. Quantification was performed by liquid chromatography mass spectroscopy (LC/MS/MS). In the grains of 100 7 treated Z. mays, only atenolol, lincomycin and carbamazepine were above the limit of detection (LOD). At the same concentration in E. sativa plants the uptake of all PACs was >LOD. Lincomycin and oflaxacin were above the limit of quantitation in all conditions tested in E. sativa. The results suggest that uptake of some pharmaceuticals from the soil may indeed be a potential transport route to plants and that these environmental pollutants can reach different edible parts of the selected crops. Measurements of the concentrations of these pharmaceuticals in plant materials were used to model potential adult human exposure to these compounds. The results indicate that under the current experimental conditions, crops exposed to the selected pharmaceutical mixture would not have any negative effects on human health. Moreover, no significant differences in the growth of E. sativa or Z. mays plants irrigated with PAC-spiked vs. non-spiked water were observed

    A multifaceted approach to reveal the very-fine root's response of Fagus sylvatica seedlings to different drought intensities

    Get PDF
    How temperate trees respond to drier summers strongly depends on the drought susceptibility and the starch reserve of the very-fine roots (<0.5 mm in diameter). We performed morphological, physiological, chemical, and proteomic analyses on very-fine roots of Fagus sylvatica seedlings grown under moderate- and severe drought conditions. Moreover, to reveal the role of the starch reserves, a girdling approach was adopted to interrupt the flux of photosynthates toward the downstream sinks. Results show a seasonal sigmoidal growth pattern without evident mortality under moderate drought. After the severe-drought period, intact plants showed lower starch concentration and higher growth than those subjected to moderate drought, highlighting that very-fine roots rely on their starch reserves to resume growth. This behaviour caused them to die with the onset of autumn, which was not observed under moderate drought. These findings indicated that extreme dry soil conditions are needed for significant root death in beech seedlings and that mortality mechanisms are defined within individual compartments. The girdling treatment showed that the physiological responses of very-fine roots to severe drought stress are critically related to the altered load or the reduced transport velocity of the phloem and that the changes in starch allocation critically alter the distribution of biomass. Proteomic evidence revealed that the phloem flux-dependent response was characterized by the decrease of carbon enzymes and the establishment of mechanisms to avoid the reduction of the osmotic potential. The response independent from the aboveground mainly involved the alteration of primary metabolic processes and cell wall-related enzymes

    Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate

    Get PDF
    Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L-1 of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions

    Quantitative phosphoproteomics reveals novel roles of cAMP in plants

    Get PDF
    3',5'-cyclic adenosine monophosphate (cAMP) is finally recognized as an essential signaling molecule in plants where cAMP-dependent processes include responses to hormones and environmental stimuli. To better understand the role of 3',5'-cAMP at the systems level, we have undertaken a phosphoproteomic analysis to elucidate the cAMP-dependent response of tobacco BY-2 cells. These cells overexpress a molecular "sponge" that buffers free intracellular cAMP level. The results show that, firstly, in vivo cAMP dampening profoundly affects the plant kinome and notably mitogen-activated protein kinases, receptor-like kinases, and calcium-dependent protein kinases, thereby modulating the cellular responses at the systems level. Secondly, buffering cAMP levels also affects mRNA processing through the modulation of the phosphorylation status of several RNA-binding proteins with roles in splicing, including many serine and arginine-rich proteins. Thirdly, cAMP-dependent phosphorylation targets appear to be conserved among plant species. Taken together, these findings are consistent with an ancient role of cAMP in mRNA processing and cellular programming and suggest that unperturbed cellular cAMP levels are essential for cellular homeostasis and signaling in plant cells

    Totally laparoscopic gastrectomy for gastric cancer : meta-analysis of short-term outcomes

    No full text
    Introduction: We present a review of the literature, together with a meta-analysis of short-term outcomes of totally laparoscopic gastrectomy (TLG) compared with open gastrectomy (OG). Material & methods: We carried out a search in the Pubmed and Cochrane databases from September 2003 to May 2009. Controlled studies on early outcomes were included, both prospective and retrospective, randomized and non-randomized. Results: We found nine eligible studies, one of which was a randomized controlled trial (RCT), while eight were series of patients (three consecutive). The study group consisted of 1,492 patients, 828 of whom had been treated with TLG and 664 treated with OG. TLG for gastric cancer shows a 32.5% (p < 0.001) longer operative time than OG, whereas TLG demonstrated a 44% (p < 0.001) reduction in blood loss, a 34% (p < 0.001) reduction time to first flatus and a 33.7% reduced (p < 0.001) hospital stay. No notable differences were registered regarding morbidity and mortality rates, and no significant difference was observed between the two groups regarding the extent of the lymphadenectomy. Conclusions: Despite a longer operative time for TLG, with a gastrointestinal recovery rate faster than the OG one for gastric cancer results, no notable differences were recorded between the two techniques for the morbidity and mortality rates and in the spread of the lymphadenectomy
    • …
    corecore