26 research outputs found

    Metastasis-inducing S100A4 protein is associated with the disease activity of rheumatoid arthritis

    Get PDF
    Objectives. To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients. Methods. Plasma levels of the S100A4 protein were analysed in 40 anti-TNF-alpha naive patients with active RA. Of the 40 patients, 25 were treated with adalimumab and monitored over time. The conformational form of S100A4 was analysed using size-exclusion gel chromatography. TNF-alpha mRNA expression and protein synthesis were analysed by RT-PCR and ELISA, respectively. Results. Baseline levels of S100A4 were significantly correlated with disease activity in RA patients (r = 0.41; P < 0.01). After 12 weeks of treatment with adalimumab, there was an obvious shift in the conformations of S100A4 from the multimeric to the dimeric forms, whereas the total levels of the S100A4 protein remained unchanged. This suggests that the bioactive (multimer) S100A4 may decline in response to successful treatment with adalimumab. In addition, we showed significant up-regulation of TNF-alpha mRNA (P < 0.01), and protein release to the cell culture medium of monocytes stimulated with the S100A4 multimer compared with those treated with the dimer and to the unstimulated monocytes (P < 0.001). Conclusions. This is the first study to show that the levels of the S100A4 protein are correlated with RA disease activity. Furthermore, only the bioactive form, but not the total amount of S100A4, decreases after successful TNF-alpha blocking therapy in patients with RA. These data support an important role for the S100A4 multimer in the pathogenesis of R

    Metabolomic and transcriptomic data on major metabolic/biosynthetic pathways in workers and soldiers of the termite Prorhinotermes simplex (Isoptera: Rhinotermitidae) and chemical synthesis of intermediates of defensive (E)-nitropentadec-1-ene biosynthesis

    No full text
    Production of nitro compounds has only seldom been recorded in arthropods. The aliphatic nitroalkene (E)-nitropentadec-1-ene (NPD), identified in soldiers of the termite genus Prorhinotermes, was the first case documented in insects in early seventies. Yet, the biosynthetic origin of NPD has long remained unknown. We previously proposed that NPD arises through the condensation of amino acids glycine and/or l-serine with tetradecanoic acid along a biosynthetic pathway analogous to the formation of sphingolipids. Here, we provide a metabolomics and transcriptomic data of the Prorhinotermes simplex termite workers and soldiers. Data are related to NPD biosynthesis in P. simplex soldiers. Original metabolomics data were deposited in MetaboLights metabolomics database and are become publicly available after publishing the original article. Additionally, chemical synthesis of biosynthetic intermediates of NPD in nonlabeled and stable labeled forms are reported. Data extend our poor knowledge of arthropod metabolome and transcriptome and would be useful for comparative study in termites or other arthropods. The data were used for de-replication of NPD biosynthesis and published separately (Jirošová et al., 2017) [1]

    Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA-sequencing

    No full text
    Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris

    Co-option of the sphingolipid metabolism for the production of nitroalkene defensive chemicals in termite soldiers

    No full text
    The aliphatic nitroalkene (E)-1 nitropentadec-1-ene (NPD), reported in early seventies in soldiers of the termite genus Prorhinotermes, was the first documented nitro compound produced by insects. Yet, its biosynthetic origin has long remained unknown. Here, we investigated in detail the biosynthesis of NPD in P. simplex soldiers. First, we track the dynamics in major metabolic pathways during soldier ontogeny, with emphasis on likely NPD precursors and intermediates. Second, we propose a hypothesis of NPD formation and verify its individual steps using in vivo incubations of putative precursors and intermediates. Third, we use a de novo assembled RNA-Seq profiles of workers and soldiers to identify putative enzymes underlying NPD formation. And fourth, we describe the caste- and age-specific expression dynamics of candidate initial genes of the proposed biosynthetic pathway. Our observations provide a strong support to the following biosynthetic scenario of NPD formation, representing an analogy of the sphingolipid pathway starting with the condensation of tetradecanoic acid with L-serine and leading to the formation of a C16 sphinganine. The C16 sphinganine is then oxidized at the terminal carbon to give rise to 2-amino-3-hydroxyhexadecanoic acid, further oxidized to 2-amino- 3-oxohexadecanoic acid. Subsequent decarboxylation yields 1-aminopentadecan-2-one, which then proceeds through six-electron oxidation of the amino moiety to give rise to 1-nitropentadecan-2-one. Keto group reduction and hydroxyl moiety elimination lead to NPD. The proposed biosynthetic sequence has been constructed from age-related quantitative dynamics of individual intermediates and confirmed by the detection of labeled products downstream of the administered labeled intermediates. Comparative RNA-Seq analyses followed by qRT-PCR validation identified orthologs of serine palmitoyltransferase and 3-ketodihydrosphingosine reductase genes as highly expressed in the NPD production site, i.e. the frontal gland of soldiers. A dramatic onset of expression of the two genes in the first days of soldier's life coincides with the start of NPD biosynthesis, giving further support to the proposed biosynthetic hypothesis

    Reindeer control over subarctic treeline alters soil fungal communities with potential consequences for soil carbon storage

    Get PDF
    The climate-driven encroachment of shrubs into the Arctic is accompanied by shifts in soil fungal communities that could contribute to a net release of carbon from tundra soils. At the same time, arctic grazers are known to prevent the establishment of deciduous shrubs and, under certain conditions, promote the dominance of evergreen shrubs. As these different vegetation types associate with contrasting fungal communities, the belowground consequences of climate change could vary among grazing regimes. Yet, at present, the impact of grazing on soil fungal communities and their links to soil carbon have remained speculative. Here we tested how soil fungal community composition, diversity and function depend on tree vicinity and long-term reindeer grazing regime and assessed how the fungal communities relate to organic soil carbon stocks in an alpine treeline ecotone in Northern Scandinavia. We determined soil carbon stocks and characterized soil fungal communities directly underneath and >3 m away from mountain birches (Betula pubescens ssp. czerepanovii) in two adjacent 55-year-old grazing regimes with or without summer grazing by reindeer (Rangifer tarandus). We show that the area exposed to year-round grazing dominated by evergreen dwarf shrubs had higher soil C:N ratio, higher fungal abundance and lower fungal diversity compared with the area with only winter grazing and higher abundance of mountain birch. Although soil carbon stocks did not differ between the grazing regimes, stocks were positively associated with root-associated ascomycetes, typical to the year-round grazing regime, and negatively associated with free-living saprotrophs, typical to the winter grazing regime. These findings suggest that when grazers promote dominance of evergreen dwarf shrubs, they induce shifts in soil fungal communities that increase soil carbon sequestration in the long term. Thus, to predict climate-driven changes in soil carbon, grazer-induced shifts in vegetation and soil fungal communities need to be accounted for

    Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons

    No full text
    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulationof the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment.Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) ordouble-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated withabout 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of thecombination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of theenergy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damageis the combination of a SSB and 1–5 BD, which is denoted as SSB+BD. The average contribution of SSB+BD to totalsimple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB+BD, theSSB+BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there isno obvious difference between the average energy depositions for a fixed complexity of SSB+BD determined by the numberof base damage, but average energy depositions increase with the complexity of SSB+BD. In the complex clustered DNAdamage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacentBD, marked as DSB+BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB+BD isgiven mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primaryenergies, the DSB combined with only one base damage contributes about 83% of total DSB+BD, and the average energydeposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, andtherefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biologicaleffects, in spite of their small contributions to all clustered DNA damage
    corecore