366 research outputs found
Two-step Liquid Drop Model for Binary, Metal-rich Clusters
It is shown that differences observed between the ionization potentials of
the molecular-doped metallic clusters and those corresponding to the bare
metallic ones can be explained by a two-step approach of the classical Liquid
Drop Model. This approach takes into account the distinct physical properties
of the interface between the molecular core and the metallic shell. Also, it is
shown that the presence of the molecular core may act in the determination of
the predominant channel of the coulombic fission.Comment: 8 page
Charge-Induced Fragmentation of Sodium Clusters
The fission of highly charged sodium clusters with fissilities X>1 is studied
by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo
predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while
Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale
\geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All
singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed
fragment spectrum is, within statistical error, independent of the temperature
T of the parent cluster for T \leq 1500 K. These findings are consistent with
and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter
Negative heat-capacity at phase-separations in microcanonical thermostatistics of macroscopic systems with either short or long-range interactions
Conventional thermo-statistics address infinite homogeneous systems within
the canonical ensemble. However, some 170 years ago the original motivation of
thermodynamics was the description of steam engines, i.e. boiling water. Its
essential physics is the separation of the gas phase from the liquid. Of
course, boiling water is inhomogeneous and as such cannot be treated by
conventional thermo-statistics. Then it is not astonishing, that a phase
transition of first order is signaled canonically by a Yang-Lee singularity.
Thus it is only treated correctly by microcanonical Boltzmann-Planck
statistics. This was elaborated in the talk presented at this conference. It
turns out that the Boltzmann-Planck statistics is much richer and gives
fundamental insight into statistical mechanics and especially into entropy.
This can be done to a far extend rigorously and analytically. The deep and
essential difference between ``extensive'' and ``intensive'' control
parameters, i.e. microcanonical and canonical statistics, was exemplified by
rotating, self-gravitating systems. In the present paper the necessary
appearance of a convex entropy and the negative heat capacity at phase
separation in small as well macroscopic systems independently of the range of
the force is pointed out.Comment: 6 pages, 1 figure, 1 table; contribution to the international
conference "Next Sigma Phi" on news, expectations, and trends in statistical
physics, Crete 200
Silver and oxygen: Transition from clusters to nanoparticles
AbstractBy varying the sizes of isolated and charged silver particles, we may observe a wide range of reactions from weak molecular-oxygen physisorption to strong oxygen chemisorption. The global electron configuration dominates the stability of the silver–oxygen complexes. Our experimental studies at 77 K show a cluster regime below 40 free valence electrons in the system. Here each atom of silver added to the complex cause strong alternations of the oxygen binding by quantum effects. Bigger silver–oxygen complexes show smoother size dependence. As is rather typical for nanoparticles, the quantum effects are here less important, while the system size still matters. The electrostatic interaction between the charge state of the nanoparticle and the charge transfer of the reaction accounts for the general trends observed at silver, as it is in related oxygen–metal complexes
Avant-propos
Le CNRS a été créé le 19 octobre 1939. La guerre en Europe venait d'éclater. Le gouvernement français souhaitait renforcer son potentiel scientifique. Depuis un demi-siècle, il cherchait la meilleure formule pour développer la recherche. Dans l'urgence, il appelait à l'effort national. Au lendemain de l'armistice de juin 1940, il fut question de supprimer un CNRS d'autant plus détesté qu'il semblait être la créature du Front populaire. Il survécut pourtant et connut, par la suite, bien des mé..
Size effect in the ionization energy of PAH clusters
We report the first experimental measurement of the near-threshold
photo-ionization spectra of polycyclic aromatic hydrocarbon clusters made of
pyrene C16H10 and coronene C24H12, obtained using imaging photoelectron
photoion coincidence spectrometry with a VUV synchrotron beamline. The
experimental results of the ionization energy are confronted to calculated ones
obtained from simulations using dedicated electronic structure treatment for
large ionized molecular clusters. Experiment and theory consistently find a
decrease of the ionization energy with cluster size. The inclusion of
temperature effects in the simulations leads to a lowering of this energy and
to a quantitative agreement with the experiment. In the case of pyrene, both
theory and experiment show a discontinuity in the IE trend for the hexamer
Semi-spheroidal Quantum Harmonic Oscillator
A new single-particle shell model is derived by solving the Schr\"odinger
equation for a semi-spheroidal potential well. Only the negative parity states
of the component of the wave function are allowed, so that new magic
numbers are obtained for oblate semi-spheroids, semi-sphere and prolate
semi-spheroids. The semi-spherical magic numbers are identical with those
obtained at the oblate spheroidal superdeformed shape: 2, 6, 14, 26, 44, 68,
100, 140, ... The superdeformed prolate magic numbers of the semi-spheroidal
shape are identical with those obtained at the spherical shape of the
spheroidal harmonic oscillator: 2, 8, 20, 40, 70, 112, 168 ...Comment: 4 pages, 3 figures, 1 tabl
Structure and properties of small sodium clusters
We have investigated structure and properties of small metal clusters using
all-electron ab initio theoretical methods based on the Hartree-Fock
approximation and density functional theory, perturbation theory and compared
results of our calculations with the available experimental data and the
results of other theoretical works. We have systematically calculated the
optimized geometries of neutral and singly charged sodium clusters having up to
20 atoms, their multipole moments (dipole and quadrupole), static
polarizabilities, binding energies per atom, ionization potentials and
frequencies of normal vibration modes. Our calculations demonstrate the great
role of many-electron correlations in the formation of electronic and ionic
structure of small metal clusters and form a good basis for further detailed
study of their dynamic properties, as well as structure and properties of other
atomic cluster systems.Comment: 47 pages, 16 figure
- …