289 research outputs found

    Ferromagnetism or slow paramagnetic relaxation in Fe-doped Li3_3N?

    Get PDF
    We report on isothermal magnetization, M\"ossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li2_2(Li1x_{1-x}Fex_x)N with x=0x = 0 and x0.30x \approx 0.30. Magnetic hysteresis emerges at temperatures below T50T \approx 50\,K with coercivity fields of up to μ0H=11.6\mu_0H = 11.6\,T at T=2T = 2\,K and magnetic anisotropy energies of 310310\,K (2727\,meV). The ac susceptibility is strongly frequency dependent (f=10f\,=\,10--10,00010,000\,Hz) and reveals an effective energy barrier for spin reversal of ΔE1100\Delta E \approx 1100\,K. The relaxation times follow Arrhenius behavior for T>25T > 25\,K. For T<10T < 10\,K, however, the relaxation times of τ1010\tau \approx 10^{10}\,s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 2525\,J molFe1^{-1}_{\rm Fe}\,K1^{-1} which significantly exceeds RRln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2_2(Li1x_{1-x}Fex_x)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure

    Magnetic interactions and spin dynamics in the bond-disordered pyrochlore fluoride NaCaCo2_2F7_7

    Full text link
    We report high-frequency/high-field electron spin resonance (ESR) and high-field magnetization studies on single crystals of the bond-disordered pyrochlore NaCaCo2_2F7_7. Frequency- and temperature-dependent ESR investigations above the freezing temperature Tf2.4T_f \sim 2.4 K reveal the coexistence of two distinct magnetic phases. A cooperative paramagnetic phase, evidenced by a gapless excitation mode, is found as well as a spin-glass phase developing below 20 K which is associated with a gapped low-energy excitation. Effective gg-factors close to 2 are obtained for both modes in line with pulsed high-field magnetization measurements which show an unsaturated isotropic behavior up to 58 T at 2 K. In order to describe the field-dependent magnetization in high magnetic fields, we propose an empirical model accounting for highly anisotropic ionic gg-tensors expected for this material and taking into account the strongly competing interactions between the spins which lead to a frustrated ground state. As a detailed quantitative relation between effective gg-factors as determined from ESR and the local gg-tensors obtained by neutron scattering [Ross et al., Phys. Rev. B 93, 014433 (2016)] is still sought after, our work motivates further theoretical investigations of the low-energy excitations in bond-disordered pyrochlores.Comment: 9 pages, 6 figure

    Direct measurement of the proton magnetic moment

    Get PDF

    The X-ray Telescope of CAST

    Get PDF
    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version accepted for publication in New Journal of Physic

    The microscopic spin-phonon coupling constants in CuGeO_3

    Full text link
    Using RPA results, mean field theory, and refined data for the polarization vectors we determine the coupling constants of the four Peierls-active phonon modes to the spin chains of CuGeO_3. We then derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the angles between bonds. Our values are consistent with microscopic theories and various experimental results. We discuss the applicability of static approaches to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press

    New solar axion search in CAST with 4^4He filling

    Get PDF
    The CERN Axion Solar Telescope (CAST) searches for aγa\to\gamma conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the X-ray refractive mass mγm_\gamma to the axion search mass mam_a. After the vacuum phase (2003--2004), which is optimal for ma0.02m_a\lesssim0.02 eV, we used 4^4He in 2005--2007 to cover the mass range of 0.02--0.39 eV and 3^3He in 2009--2011 to scan from 0.39--1.17 eV. After improving the detectors and shielding, we returned to 4^4He in 2012 to investigate a narrow mam_a range around 0.2 eV ("candidate setting" of our earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with 4^4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to gaγ<1.47×1010GeV1g_{a\gamma}< 1.47\times10^{-10} {\rm GeV}^{-1} (95% C.L.), depending on the pressure settings. Since 2013, we have returned to vacuum and aim for a significant increase in sensitivity.Comment: CAST Collaboration 6 pages 3 figure

    Solar axion search with the CAST experiment

    Get PDF
    The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipe of an LHC dipole. The analysis of the data recorded during the first phase of the experiment with vacuum in the magnet pipes has resulted in the most restrictive experimental limit on the coupling constant of axions to photons. In the second phase, CAST is operating with a buffer gas inside the magnet pipes in order to extent the sensitivity of the experiment to higher axion masses. We will present the first results on the 4He^{4}{\rm He} data taking as well as the system upgrades that have been operated in the last year in order to adapt the experiment for the 3He^{3}{\rm He} data taking. Expected sensitivities on the coupling constant of axions to photons will be given for the recent 3He^{3}{\rm He} run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc

    Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter

    Full text link
    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.Comment: 20 pages, 8 figures, final version to be published in JCA
    corecore