289 research outputs found
Ferromagnetism or slow paramagnetic relaxation in Fe-doped LiN?
We report on isothermal magnetization, M\"ossbauer spectroscopy, and
magnetostriction as well as temperature-dependent alternating-current (ac)
susceptibility, specific heat, and thermal expansion of single crystalline and
polycrstalline Li(LiFe)N with and .
Magnetic hysteresis emerges at temperatures below K with
coercivity fields of up to T at K and magnetic
anisotropy energies of K (meV). The ac susceptibility is strongly
frequency dependent (--Hz) and reveals an effective energy
barrier for spin reversal of K. The relaxation times
follow Arrhenius behavior for K. For K, however, the
relaxation times of s are only weakly
temperature-dependent indicating the relevance of a quantum tunneling process
instead of thermal excitations. The magnetic entropy amounts to more than
J molK which significantly exceeds ln2, the
value expected for the entropy of a ground state doublet. Thermal expansion and
magnetostriction indicate a weak magneto-elastic coupling in accordance with
slow relaxation of the magnetization. The classification of
Li(LiFe)N as ferromagnet is stressed and contrasted with highly
anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure
Magnetic interactions and spin dynamics in the bond-disordered pyrochlore fluoride NaCaCoF
We report high-frequency/high-field electron spin resonance (ESR) and
high-field magnetization studies on single crystals of the bond-disordered
pyrochlore NaCaCoF. Frequency- and temperature-dependent ESR
investigations above the freezing temperature K reveal the
coexistence of two distinct magnetic phases. A cooperative paramagnetic phase,
evidenced by a gapless excitation mode, is found as well as a spin-glass phase
developing below 20 K which is associated with a gapped low-energy excitation.
Effective -factors close to 2 are obtained for both modes in line with
pulsed high-field magnetization measurements which show an unsaturated
isotropic behavior up to 58 T at 2 K. In order to describe the field-dependent
magnetization in high magnetic fields, we propose an empirical model accounting
for highly anisotropic ionic -tensors expected for this material and taking
into account the strongly competing interactions between the spins which lead
to a frustrated ground state. As a detailed quantitative relation between
effective -factors as determined from ESR and the local -tensors obtained
by neutron scattering [Ross et al., Phys. Rev. B 93, 014433 (2016)] is still
sought after, our work motivates further theoretical investigations of the
low-energy excitations in bond-disordered pyrochlores.Comment: 9 pages, 6 figure
The X-ray Telescope of CAST
The Cern Axion Solar Telescope (CAST) is in operation and taking data since
2003. The main objective of the CAST experiment is to search for a hypothetical
pseudoscalar boson, the axion, which might be produced in the core of the sun.
The basic physics process CAST is based on is the time inverted Primakoff
effect, by which an axion can be converted into a detectable photon in an
external electromagnetic field. The resulting X-ray photons are expected to be
thermally distributed between 1 and 7 keV. The most sensitive detector system
of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system.
With the X-ray telescope of CAST a background reduction of more than 2 orders
off magnitude is achieved, such that for the first time the axion photon
coupling constant g_agg can be probed beyond the best astrophysical constraints
g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version
accepted for publication in New Journal of Physic
The microscopic spin-phonon coupling constants in CuGeO_3
Using RPA results, mean field theory, and refined data for the polarization
vectors we determine the coupling constants of the four Peierls-active phonon
modes to the spin chains of CuGeO_3. We then derive the values of the coupling
of the spin system to the linear ionic displacements, the bond lengths and the
angles between bonds. Our values are consistent with microscopic theories and
various experimental results. We discuss the applicability of static approaches
to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is
explained. We give the values of the coupling constants in an effective
one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press
New solar axion search in CAST with He filling
The CERN Axion Solar Telescope (CAST) searches for conversion in
the 9 T magnetic field of a refurbished LHC test magnet that can be directed
toward the Sun. Two parallel magnet bores can be filled with helium of
adjustable pressure to match the X-ray refractive mass to the axion
search mass . After the vacuum phase (2003--2004), which is optimal for
eV, we used He in 2005--2007 to cover the mass range of
0.02--0.39 eV and He in 2009--2011 to scan from 0.39--1.17 eV. After
improving the detectors and shielding, we returned to He in 2012 to
investigate a narrow range around 0.2 eV ("candidate setting" of our
earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with
He, to "cross the axion line" for the KSVZ model. We have improved the
limit on the axion-photon coupling to (95% C.L.), depending on the pressure settings. Since 2013, we
have returned to vacuum and aim for a significant increase in sensitivity.Comment: CAST Collaboration 6 pages 3 figure
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter
We present the results of a search for a high-energy axion emission signal
from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a
low-background gamma-ray calorimeter during Phase I of the CAST experiment.
These so-called "hadronic axions" could provide a solution to the long-standing
strong-CP problem and can be emitted from the solar core from nuclear M1
transitions. This is the first such search for high-energy pseudoscalar bosons
with couplings to nucleons conducted using a helioscope approach. No excess
signal above background was found.Comment: 20 pages, 8 figures, final version to be published in JCA
- …
