46 research outputs found

    Valuing vicinity: Memory attention framework for context-based semantic segmentation in histopathology

    Get PDF
    The segmentation of histopathological whole slide images into tumourous and non-tumourous types of tissue is a challenging task that requires the consideration of both local and global spatial contexts to classify tumourous regions precisely. The identification of subtypes of tumour tissue complicates the issue as the sharpness of separation decreases and the pathologist’s reasoning is even more guided by spatial context. However, the identification of detailed tissue types is crucial for providing personalized cancer therapies. Due to the high resolution of whole slide images, existing semantic segmentation methods, restricted to isolated image sections, are incapable of processing context information beyond. To take a step towards better context comprehension, we propose a patch neighbour attention mechanism to query the neighbouring tissue context from a patch embedding memory bank and infuse context embeddings into bottleneck hidden feature maps. Our memory attention framework (MAF) mimics a pathologist’s annotation procedure — zooming out and considering surrounding tissue context. The framework can be integrated into any encoder–decoder segmentation method. We evaluate the MAF on two public breast cancer and liver cancer data sets and an internal kidney cancer data set using famous segmentation models (U-Net, DeeplabV3) and demonstrate the superiority over other context-integrating algorithms — achieving a substantial improvement of up to 17% on Dice score

    The mTOR inhibitor Rapamycin protects from premature cellular senescence early after experimental kidney transplantation

    Get PDF
    Interstitial fibrosis and tubular atrophy, a major cause of kidney allograft dysfunction, has been linked to premature cellular senescence. The mTOR inhibitor Rapamycin protects from senescence in experimental models, but its antiproliferative properties have raised concern early after transplantation particularly at higher doses. Its effect on senescence has not been studied in kidney transplantation, yet. Rapamycin was applied to a rat kidney transplantation model (3 mg/kg bodyweight loading dose, 1.5 mg/kg bodyweight daily dose) for 7 days. Low Rapamycin trough levels (2.1-6.8 ng/mL) prevented the accumulation of p16(INK4a) positive cells in tubules, interstitium, and glomerula. Expression of the cytokines MCP-1, IL-1 beta, and TNF-alpha, defining the proinflammatory senescence-associated secretory phenotype, was abrogated. Infiltration with monocytes/macrophages and CD8(+) T-lymphocytes was reduced and tubular function was preserved by Rapamycin. Inhibition of mTOR was not associated with impaired structural recovery, higher glucose levels, or weight loss. mTOR inhibition with low-dose Rapamycin in the immediate posttransplant period protected from premature cellular senescence without negative effects on structural and functional recovery from preservation/reperfusion damage, glucose homeostasis, and growth in a rat kidney transplantation model. Reduced senescence might maintain the renal regenerative capacity rendering resilience to future injuries resulting in protection from interstitial fibrosis and tubular atrophy

    Cholemic nephropathy causes acute kidney injury and is accompanied by loss of aquaporin 2 in collecting ducts

    Get PDF
    Impairment of renal function often occurs in patients with liver disease. Hepatorenal syndrome is a significant cause of acute kidney injury (AKI) in cirrhotic patients (HRS-AKI, type 1). Causes of non-HRS AKI include cholemic nephropathy (CN), a disease that is characterized by intratubular bile casts and tubular injury. As data on patients with CN is mostly obtained from case reports or autopsy studies, we aimed to investigate the frequency and clinical course of CN. We identified 149 patients who underwent kidney biopsy between 2000 to 2016 at the Department of Gastroenterology, Hepatology and Endocrinology. Of these, 79 had a history of liver disease and deterioration of renal function. When applying recent EASL criteria 45 of the 79 patients (57%) presented with AKI, whereas 34 patients (43%) had chronic kidney disease (CKD) (43%). Renal biopsy revealed the diagnosis of CN in 8 of the 45 patients with AKI (17.8%), whereas none of the patients with CKD was diagnosed with CN. Univariate analysis identified serum bilirubin, alkaline phosphatase and urinary bilirubin and urobilinogen as predictive factors for the diagnosis of CN. Histological analysis of AKI patients with normal bilirubin, elevated bilirubin and the diagnosis of CN revealed loss aquaporin 2 (AQP2) expression in collecting ducts in patients with elevated bilirubin and CN. Biopsy related complications requiring medical intervention occurred in four of 79 patients (5.1%). In conclusion, CN is a common finding in patients with liver disease, AKI and highly elevated bilirubin. Loss of AQP2 in AKI patients with elevated bilirubin and CN might be the result of toxic effects of cholestasis and be in part responsible for the impairment of renal function

    Oxygen carriers affect kidney immunogenicity during ex-vivo machine perfusion

    Get PDF
    Normothermic ex-vivo machine perfusion provides a powerful tool to improve donor kidney preservation and a route for the delivery of pharmacological or gene therapeutic interventions prior to transplantation. However, perfusion at normothermic temperatures requires adequate tissue oxygenation to meet the physiological metabolic demand. For this purpose, the addition of appropriate oxygen carriers (OCs) to the perfusion solution is essential to ensure a sufficient oxygen supply and reduce the risk for tissue injury due to hypoxia. It is crucial that the selected OCs preserve the integrity and low immunogenicity of the graft. In this study, the effect of two OCs on the organ's integrity and immunogenicity was evaluated. Porcine kidneys were perfused ex-vivo for four hours using perfusion solutions supplemented with red blood cells (RBCs) as conventional OC, perfluorocarbon (PFC)-based OC, or Hemarina-M101 (M101), a lugworm hemoglobin-based OC named HEMO2life®, recently approved in Europe (i.e., CE obtained in October 2022). Perfusions with all OCs led to decreased lactate levels. Additionally, none of the OCs negatively affected renal morphology as determined by histological analyses. Remarkably, all OCs improved the perfusion solution by reducing the expression of pro-inflammatory mediators (IL-6, IL-8, TNFα) and adhesion molecules (ICAM-1) on both transcript and protein level, suggesting a beneficial effect of the OCs in maintaining the low immunogenicity of the graft. Thus, PFC-based OCs and M101 may constitute a promising alternative to RBCs during normothermic ex-vivo kidney perfusion

    Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis

    Get PDF
    Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity. Consistent with this, deficiency of RIPK3 or MLKL prevents oxalate crystal-induced acute kidney injury. The related tissue inflammation drives TNF-alpha-related necroptosis. Also in human oxalate crystal-related acute kidney injury, dying tubular cells stain positive for phosphorylated MLKL. Furthermore, necrostatin-1 and necrosulfonamide, an inhibitor for human MLKL suppress crystal-induced cell death in human renal progenitor cells. Together, TNF-alpha/TNFR1, RIPK1, RIPK3 and MLKL are molecular targets to limit crystal-induced cytotoxicity, tissue injury and organ failure

    Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis

    Get PDF
    Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity. Consistent with this, deficiency of RIPK3 or MLKL prevents oxalate crystal-induced acute kidney injury. The related tissue inflammation drives TNF-alpha-related necroptosis. Also in human oxalate crystal-related acute kidney injury, dying tubular cells stain positive for phosphorylated MLKL. Furthermore, necrostatin-1 and necrosulfonamide, an inhibitor for human MLKL suppress crystal-induced cell death in human renal progenitor cells. Together, TNF-alpha/TNFR1, RIPK1, RIPK3 and MLKL are molecular targets to limit crystal-induced cytotoxicity, tissue injury and organ failure

    Direct evidence of SARS-CoV-2 in gut endothelium

    Get PDF

    Crescentic glomerulonephritis in children

    No full text
    Background!#!To date, there is insufficient knowledge about crescentic glomerulonephritis (cGN), the most frequent immunologic cause of acute kidney injury in children.!##!Methods!#!Over a period of 16 years, we retrospectively analyzed kidney biopsy results, the clinical course, and laboratory data in 60 pediatric patients diagnosed with cGN.!##!Results!#!The underlying diseases were immune complex GN (n = 45/60, 75%), including IgA nephropathy (n = 19/45, 42%), lupus nephritis (n = 10/45, 22%), Henoch-Schoenlein purpura nephritis (n = 7/45, 16%) and post-infectious GN (n = 7/45, 16%), ANCA-associated pauci-immune GN (n = 10/60, 17%), and anti-glomerular basement-membrane GN (n = 1/60, 2%). Patient CKD stages at time of diagnosis and at a median of 362 days (range 237-425) were CKD I: n = 13/n = 29, CKD II: n = 15/n = 9, CKD III: n = 16/n = 7, CKD IV: n = 3/n = 3, CKD V: n = 13/n = 5. Course of cGN was different according to class of cGN, duration of disease from first clinical signs to diagnosis of cGN by biopsy, percentage of crescentic glomeruli, amount of tubular atrophy/interstitial fibrosis and necrosis on renal biopsy, gender, age, nephrotic syndrome, arterial hypertension, dialysis at presentation, and relapse. Forty-eight/60 children were treated with ≥ 5 (methyl-) prednisolone pulses and 53 patients received oral prednis(ol)one in combination with mycophenolate mofetil (n = 20), cyclosporine A (n = 20), and/or cyclophosphamide (n = 6), rituximab (n = 5), azathioprine (n = 2), tacrolimus (n = 1), and plasmapheresis/immunoadsorption (n = 5).!##!Conclusions!#!The treatment success of cGN is dependent on early diagnosis and aggressive therapy, as well as on the percentage of crescentic glomeruli on renal biopsy and on the underlying type of cGN. CsA and MMF seem to be effective alternatives to cyclophosphamide

    Absence of SARS-CoV-2 RNA in COVID-19-associated intestinal endothelialitis

    Full text link

    Fatal Pneumococcus Sepsis after Treatment of Late Antibody-Mediated Kidney Graft Rejection

    No full text
    Antibody-mediated rejection (ABMR) is a major cause of late renal allograft dysfunction and graft loss. Risks and benefits of treatment of late ABMR have not been evaluated in randomized clinical trials. We report on a 35-year-old patient with deterioration in renal function and progressive proteinuria 15 years after transplantation. Recurrent infections after a splenectomy following traumatic splenic rupture 3 years earlier had led to reduction of immunosuppression. Renal transplant biopsy showed glomerular double contours, 40% fibrosis/tubular atrophy, peritubular capillaritis, and positive C4d staining indicating chronic-active ABMR. ABMR treatment was initiated with steroids, plasmapheresis, and rituximab. Fourteen days later, she presented to the emergency department with fever, diarrhea, vomiting, and hypotension. Despite antibiotic treatment she deteriorated with progressive hypotension, capillary leak with pleural effusion, peripheral edema, and progressive respiratory insufficiency. She died due to septic shock five days after admission. Blood cultures showed Streptococcus pneumoniae, consistent with a diagnosis of overwhelming postsplenectomy infection syndrome, despite protective pneumococcus vaccination titers. We assume that the infection was caused by one of the strains not covered by the Pneumovax 23 vaccination. The increased immunosuppression with B cell depletion may have contributed to the overwhelming course of this infection
    corecore