502 research outputs found

    Immediate performance of self-etching versus system adhesives with multiple light-activated restoratives

    Get PDF
    Objectives: The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. Methods: The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. Results: For light-activated restorative materials during early setting (&#60;3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r=0.86–0.89, p&#60;0.02–0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Significance: Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.</p

    Emergence and maintenance of biodiversity in an evolutionary food-web model

    Get PDF
    Ecological communities emerge as a consequence of gradual evolution, speciation, and immigration. In this study, we explore how these processes and the structure of the evolved food webs are affected by species-level properties. Using a model of biodiversity formation that is based on body size as the evolving trait and incorporates gradual evolution and adaptive radiation, we investigate how conditions for initial diversification relate to the eventual diversity of a food web. We also study how trophic interactions, interference competition, and energy availability affect a food web's maximum trophic level and contrast this with conditions for high diversity. We find that there is not always a positive relationship between conditions that promote initial diversification and eventual diversity, and that the most diverse food webs often do not have the highest trophic levels

    Dynamics and management of stage-structured fish stocks

    Get PDF
    With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in both models, that the models share the same steady states, and that there exists at most one positive steady state. Furthermore, we carry out numerical investigations which suggest that a steady state is globally stable if it is locally stable Second, we consider multi-objective harvesting strategies which account for yield, profit, and the recovery potential of the fish stock. The recovery potential is a measure of how quickly a fish stock can recover from a major disturbance and serves as an indication of the extinction risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield or profit allows for a disproportional increase in recovery potential. We also show that there exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and profit close to that associated with the maximum economic yield (MEY). In offering a good compromise between MSY and MEY, we believe that this harvesting strategy is preferable in most instances. Third, we consider the impact of harvesting on population size structure and analytically determine the most and least harmful harvesting strategies. We conclude that the most harmful harvesting strategy consists of harvesting both adults and juveniles, while harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning signal of impending stock collapse

    Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis

    Get PDF
    The most common cause of amyotrophic lateral sclerosis (ALS) is mutations in superoxide dismutase-1 (SOD1). Since there is evidence for the involvement of non-neuronal cells in ALS, we searched for signs of SOD1 abnormalities focusing on glia. Spinal cords from nine ALS patients carrying SOD1 mutations, 51 patients with sporadic or familial ALS who lacked such mutations, and 46 controls were examined by immunohistochemistry. A set of anti-peptide antibodies with specificity for misfolded SOD1 species was used. Misfolded SOD1 in the form of granular aggregates was regularly detected in the nuclei of ventral horn astrocytes, microglia, and oligodendrocytes in ALS patients carrying or lacking SOD1 mutations. There was negligible staining in neurodegenerative and non-neurological controls. Misfolded SOD1 appeared occasionally also in nuclei of motoneurons of ALS patients. The results suggest that misfolded SOD1 present in glial and motoneuron nuclei may generally be involved in ALS pathogenesis

    Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)

    Get PDF
    Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as a mechanistic and causal link between process and pattern is often lacking, and evolutionary processes and trophic interactions are ignored. Here, we revisit the current knowledge on community assembly across scales and, in line with several reviews that have outlined challenges associated with current inference techniques, we identify a discrepancy between the current paradigm of eco-evolutionary community assembly and current inference techniques that focus mainly on competition and habitat filtering. We argue that trait-based dynamic eco-evolutionary models in combination with recently developed model fitting and model evaluation techniques can provide avenues for more accurate, reliable, and inclusive inference. To exemplify, we implement a trait-based, spatially explicit eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. Through a case study on inference of prey and predator niche width in an eco-evolutionary context, we demonstrate how inclusive and mechanistic approaches—eco-evolutionary modelling and Approximate Bayesian Computation (ABC)—can enable inference of assembly processes that have been largely neglected by traditional techniques despite the ubiquity of such processes. Much literature points to the limitations of current inference techniques, but concrete solutions to such limitations are few. Many of the challenges associated with novel inference techniques are, however, already to some extent resolved in other fields and thus ready to be put into action in a more formal way for inferring processes of community assembly from signals in various data sources

    Differentiation and displacement: Unpicking the relationship between accounts of illness and social structure

    Get PDF
    This article seeks to unpack the relationship between social structure and accounts of illness. Taking dentine hypersensitivity as an example, this article explores the perspective that accounts of illness are sense-making processes that draw on a readily available pool of meaning. This pool of meaning is composed of a series of distinctions that make available a range of different lines of communication and action about such conditions. Such lines of communication are condensed and preserved over time and are often formed around a concept and its counter concept. The study of such processes is referred to as semantic analysis and involves drawing on the tools and techniques of conceptual history. This article goes on to explore how the semantics of dentine hypersensitivity developed. It illustrates how processes of social differentiation led to the concept being separated from the more dominant concept of dentine sensitivity and how it was medicalised, scientised and economised. In short, this study seeks to present the story of how society has developed a specific language for communicating about sensitivity and hypersensitivity in teeth. In doing so, it proposes that accounts of dentine hypersensitivity draw on lines of communication that society has preserved over time
    corecore