6 research outputs found

    Economic analysis of cucumber and lettuce intercropping under greenhouse in the winter-spring

    No full text
    A análise econômica complementa a avaliação da eficiência dos cultivos consorciados, considerando além da produção física das culturas, o preço dos produtos segundo sua classificação qualitativa e época do ano. Avaliou-se economicamente consórcios de alface crespa e pepino, em duas populações de plantas, no inverno-primavera, em casa de vegetação, em Jaboticabal, SP, Brasil. Foram calculados o custo operacional total (COT), a receita bruta (RB) e o lucro operacional (LO) das culturas do pepino e alface em monocultura e em consórcio. A mão-de-obra foi a componente com maior participação no COT das culturas em consórcio e monocultura. Maiores RB e LO foram observadas nos cultivos consorciados estabelecidos com o transplante da alface e do pepino no mesmo dia, independente da densidade populacional. Considerando-se o lucro operacional e o índice de uso eficiente da área, recomenda-se o cultivo consorciado com transplante da alface até 10 dias após o transplante (DAT) do pepino, com duas linhas, e ao 0 DAT do pepino cultivado com uma linha no canteiroThe economical analysis complements the evaluation of the intercrop systems efficiency, considering besides the physical production of crops, the price of products according to their quality classification and time of the year. Intercropping systems of lettuce and cucumber in two plant populations under greenhouse were economically evaluated in winter-spring, in Jaboticabal City, São Paulo State, Brazil. The total operating cost (TOC) of cucumber and lettuce as sole crop and intercropping were estimated, as well as gross revenue (GR) and operating profit (OP). The labor for the crops was the component with greater participation in the TOC of crops in intercropping and single crop. Greater GR and OP were observed in intercrops established by transplanting lettuce and cucumbers on the same day. Considering the operating profit and the land efficient ratio, it is recommended the intercropping of lettuce transplanted until 10 days after the transplanting (DAT) of cucumber with two rows per plot, and at 0 DAT of cucumber grown with a row plo

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore