22 research outputs found

    Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths

    Get PDF
    Background: Acceleration of chronic diseases, particularly cardiovascular disease, may increase long-term mortality after community-acquired pneumonia (CAP), but underlying mechanisms are unknown. Persistence of the prothrombotic state that occurs during an acute infection may increase risk of subsequent atherothrombosis in patients with pre-existing cardiovascular disease and increase subsequent risk of death. We hypothesized that circulating hemostasis markers activated during CAP persist at hospital discharge, when patients appear to have recovered clinically, and are associated with higher mortality, particularly due to cardiovascular causes. Methods: In a cohort of survivors of CAP hospitalization from 28 US sites, we measured D-Dimer, thrombin-antithrombin complexes [TAT], Factor IX, antithrombin, and plasminogen activator inhibitor-1 at hospital discharge, and determined 1-year all-cause and cardiovascular mortality. Results: Of 893 subjects, most did not have severe pneumonia (70.6% never developed severe sepsis) and only 13.4% required intensive care unit admission. At discharge, 88.4% of subjects had normal vital signs and appeared to have clinically recovered. D-dimer and TAT levels were elevated at discharge in 78.8% and 30.1% of all subjects, and in 51.3% and 25.3% of those without severe sepsis. Higher D-dimer and TAT levels were associated with higher risk of all-cause mortality (range of hazard ratios were 1.66-1.17, p = 0.0001 and 1.46-1.04, p = 0.001 after adjusting for demographics and comorbid illnesses) and cardiovascular mortality (p = 0.009 and 0.003 in competing risk analyses). Conclusions: Elevations of TAT and D-dimer levels are common at hospital discharge in patients who appeared to have recovered clinically from pneumonia and are associated with higher risk of subsequent deaths, particularly due to cardiovascular disease. © 2011 Yende et al

    T-cell Subsets and Antifungal Host Defenses

    Get PDF
    It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens

    Gap junctions in olfactory neurons modulate olfactory sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the fundamental questions in olfaction is whether olfactory receptor neurons (ORNs) behave as independent entities within the olfactory epithelium. On the basis that mature ORNs express multiple connexins, I postulated that gap junctional communication modulates olfactory responses in the periphery and that disruption of gap junctions in ORNs reduces olfactory sensitivity. The data collected from characterizing connexin 43 (Cx43) dominant negative transgenic mice OlfDNCX, and from calcium imaging of wild type mice (WT) support my hypothesis.</p> <p>Results</p> <p>I generated OlfDNCX mice that express a dominant negative Cx43 protein, Cx43/β-gal, in mature ORNs to inactivate gap junctions and hemichannels composed of Cx43 or other structurally related connexins. Characterization of OlfDNCX revealed that Cx43/β-gal was exclusively expressed in areas where mature ORNs resided. Real time quantitative PCR indicated that cellular machineries of OlfDNCX were normal in comparison to WT. Electroolfactogram recordings showed decreased olfactory responses to octaldehyde, heptaldehyde and acetyl acetate in OlfDNCX compared to WT. Octaldehyde-elicited glomerular activity in the olfactory bulb, measured according to odor-elicited <it>c-fos </it>mRNA upregulation in juxtaglomerular cells, was confined to smaller areas of the glomerular layer in OlfDNCX compared to WT. In WT mice, octaldehyde sensitive neurons exhibited reduced response magnitudes after application of gap junction uncoupling reagents and the effects were specific to subsets of neurons.</p> <p>Conclusions</p> <p>My study has demonstrated that altered assembly of Cx43 or structurally related connexins in ORNs modulates olfactory responses and changes olfactory activation maps in the olfactory bulb. Furthermore, pharmacologically uncoupling of gap junctions reduces olfactory activity in subsets of ORNs. These data suggest that gap junctional communication or hemichannel activity plays a critical role in maintaining olfactory sensitivity and odor perception.</p

    Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO

    Get PDF
    Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-?B activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-?, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-?/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.We thank Cristina Massi Benedetti for digital art and editing. This work was supported by the Specific Targeted Research Project 'Sybaris' (LSHE-CT-2006), contract number 037899 (FP7) and by the Italian Projects PRIN 2007KLCKP8_004 (to LR) and 2007XYB9T9_001 (to SB). CC and AC were financially supported by fellowships from Fundacao para a Ciencia e Tecnologia, Portugal (contracts SFRH/BD/65962/2009 and SFRH/BPD/46292/2008, respectively)

    Fungal vaccines and immunotherapeutics: current concepts and future challenges

    Get PDF
    Purpose of review The remarkable advances in modern medicine have paradoxically resulted in a rapidly expanding population of immunocompromised patients displaying extreme susceptibility to life-threatening fungal infections. There are currently no licensed vaccines, and the prophylaxis and therapy of fungal infections in at-risk individuals remains challenging, contributing to undesirable mortality and morbidity rates. The design of successful antifungal preventive approaches has been hampered by an insufficient understanding of the dynamics of the host-fungus interaction and the mechanisms that underlie heterogenous immune responses to vaccines and immunotherapy. Recent findings Recent advances in proteomics and glycomics have contributed to the identification of candidate antigens for use in subunit vaccines, novel adjuvants, and delivery systems to boost the efficacy of protective vaccination responses that are becoming available, and several targets are being exploited in immunotherapeutic approaches. Summary We review some of the emerging concepts as well as the inherent challenges to the development of fungal vaccines and immunotherapies to protect at-risk individuals.ThisworkwassupportedbytheNorthernPortugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (contracts IF/00735/ 2014 to A.C., and SFRH/BPD/96176/2013 to C.C).info:eu-repo/semantics/publishedVersio

    Host genetic signatures of susceptibility to fungal disease

    Get PDF
    Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013 to CC), the Institut Mérieux (Mérieux Research Grant 2017 to CC), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC)

    Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans

    Get PDF
    The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease

    A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist

    Get PDF
    Contains fulltext : 127639.pdf (publisher's version ) (Open Access)The galactosaminogalactan (GAG) is a cell wall component of Aspergillus fumigatus that has potent anti-inflammatory effects in mice. However, the mechanisms responsible for the anti-inflammatory property of GAG remain to be elucidated. In the present study we used in vitro PBMC stimulation assays to demonstrate, that GAG inhibits proinflammatory T-helper (Th)1 and Th17 cytokine production in human PBMCs by inducing Interleukin-1 receptor antagonist (IL-1Ra), a potent anti-inflammatory cytokine that blocks IL-1 signalling. GAG cannot suppress human T-helper cytokine production in the presence of neutralizing antibodies against IL-1Ra. In a mouse model of invasive aspergillosis, GAG induces IL-1Ra in vivo, and the increased susceptibility to invasive aspergillosis in the presence of GAG in wild type mice is not observed in mice deficient for IL-1Ra. Additionally, we demonstrate that the capacity of GAG to induce IL-1Ra could also be used for treatment of inflammatory diseases, as GAG was able to reduce severity of an experimental model of allergic aspergillosis, and in a murine DSS-induced colitis model. In the setting of invasive aspergillosis, GAG has a significant immunomodulatory function by inducing IL-1Ra and notably IL-1Ra knockout mice are completely protected to invasive pulmonary aspergillosis. This opens new treatment strategies that target IL-1Ra in the setting of acute invasive fungal infection. However, the observation that GAG can also protect mice from allergy and colitis makes GAG or a derivative structure of GAG a potential treatment compound for IL-1 driven inflammatory diseases
    corecore