61 research outputs found

    Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy

    Get PDF
    Background: Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn). Results: Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S, Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%(tot. xyl) (wild-type Tx-Xyn) to 18.6% to 20.4%(tot. xyl). Also, all five mutant enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 1500), thus procuring increases in overall wheat straw hydrolysis. Conclusions: Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is linked to (i) improved ligand binding in a putative secondary binding site, (ii) the diminution of surface hydrophobicity, and/or (iii) the modification of thumb flexibility, induced by mutations at position 111. Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the lignin barrier

    Education for Environmental Citizenship and Responsible Environmental Behaviour

    Get PDF
    The notion of Environmental Citizenship embodies behaviour – an actively involved citizen who exercises his/her environmental rights and obligations in the private and public spheres. Education for Environmental Citizenship implies behavioural change; its goal is to facilitate an individual’s intellectual growth (cognitive domain) and emotional capacity (affective domain) that may lead to a critical and actively engaged individual. Human behaviour is overwhelmingly sophisticated, and what shapes pro-environmental behaviour is complex and context specific. Furthermore, empirical research indicates a discrepancy between possessing environmental knowledge and environmentally supportive attitudes and behaving pro-environmentally. The point of departure of this chapter is that the social and psychological study of behaviour has much to inform the study of environmental behaviour and, deriving from this, to inform regarding the type of education towards behaviour/action in the goal of sustainable socioecological transformation. The chapter focuses on internal (psychosocial) factors. It presents selected models regarding factors influencing behavioural decisions that are acknowledged as influential theoretical frameworks for investigating pro-environmental behaviour, as well as various theories that inform these models. These are categorised into knowledge-based models; attitude-, value- and norm-oriented models; skills, self-efficacy and situational factors; and new approaches to environmental behaviour models. The chapter concludes with suggestions for Education for Environmental Citizenship deriving from the various models

    Resilient cooling strategies – A critical review and qualitative assessment

    Get PDF
    The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out

    Occurrence of Flavonols in Tomatoes and Tomato-Based Products

    No full text
    The flavonol contents of 20 varieties of tomato fruit were investigated in relation to variety, size, season, and country of origin. Ten commonly consumed tomato-based food products were also assessed. Free and conjugated flavonols were identified and quantified using reversed-phase HPLC. Ninety-eight percent of flavonols detected in tomatoes were found to occur in the skin. Tomatoes contained, primarily as conjugates, quercetin and kaempferol. The main quercetin conjugate was identified as rutin (quercetin 3-rhamnosylglucoside) by LC-MS. The total flavonol content of the different varieties of tomato that were analyzed varied from 1.3 to 22.2 ”g/g of fresh weight (fw). Smaller cherry tomato fruits originating from warm sunny climates, such as Spain and Israel, were found to contain the highest concentration of flavonols. Among the tomato-based products investigated, tomato juice and tomato pure Že were rich in flavonols, containing 14-16 ”g/mL and 70 ”g/g fw, respectively. In contrast to fresh tomatoes, most tomato-based products contained significant amounts of free flavonols
    • 

    corecore